Hybrid Naming Scheme & Benchmark Synopsis
This report summarizes baseline and hybrid quantization results for Qwen3-4B-Instruct-2507-unsloth as measured by the Magic Quant pipeline.
Naming Scheme
Model variants follow a structured suffix convention that encodes both the base conversion mode and per-tensor quantization schemes.
| Suffix Example | Meaning |
|---|---|
BF16 |
Pure full-precision family baseline (no quantization). |
Q8_0, Q6_K, Q5_K, Q4_K_M, IQ4_NL, MXFP4_MOE |
Pure model-wide quantization baselines. |
iq4_nl-emb_Q4_K-head_Q4_K-moe_rt_Q4_K |
Base conversion mode iq4_nl with per-group schemes: embeddings (emb_), output head (head_), MoE router (moe_rt_). |
...-aq_F16-akv_Q8_0-fd_Q4_K-ao_Q5_K |
Extended sensitivity groups: Attention Q (aq_), Attention K+V (akv_), FFN Down (fd_), Attention Output (ao_). |
mxfp4_moe-emb_IQ4_NL-head_Q6_K-moe_exp_MXFP4-moe_rt_Q6_K |
MXFP4-centric hybrids with MoE expert group (moe_exp_) and mixed IQ / Q-schemes per tensor group. |
In general, anything after the base model name is a purely mechanical description of how the weights were transformed, not a new training run.
Benchmark Methodology
All models were tested with a unified automated harness using llama.cpp tools.
Included tests:
Throughput:
llama-benchwith descending GPU offload (-ngl 35 → 0) and automatic OOM retry.
Highest successful TPS is recorded.Perplexity:
Three domains: general, code, math.
Each uses an auto-generated corpus of ~32k tokens.
Perplexity is computed withllama-perplexityat 2048-token context.
Same GPU retry logic as above.Precision loss:
Each model is compared to its family BF16 baseline.
Precision-loss % is computed for all PPL domains, plus an averaged score.
Models are ranked by this metric.
Table - Overview of Results
Comparing to BF16.
| model_name | size_reduction | tps_change |
|---|---|---|
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 46.93% | 46.64% |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 48.00% | 39.41% |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 59.60% | 68.19% |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 69.60% | 61.56% |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 65.07% | 83.66% |
| IQ4_NL | 70.27% | 67.59% |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 70.67% | 70.40% |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 69.47% | 71.89% |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 72.00% | 103.44% |
- All percentages compared against the selected family BF16 baseline.
Table - File Size + TPS + Avg Precision Loss
| model_name | file_size_gb | bench_tps | avg_prec_loss |
|---|---|---|---|
| BF16 | 7.50 | 254.70 | 0.0000 |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 3.98 | 373.48 | 0.0533 |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 3.90 | 355.09 | 0.0728 |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 3.03 | 428.37 | 0.1631 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 2.28 | 411.49 | 0.7356 |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 2.62 | 467.79 | 0.8322 |
| IQ4_NL | 2.23 | 426.86 | 0.8996 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 2.20 | 434.01 | 1.0426 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 2.29 | 437.81 | 1.1673 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 2.10 | 518.15 | 2.0904 |
avg_prec_lossis the averaged absolute precision-loss % vs BF16.
Table - PPL Columns
| model_name | gen | gen_er | code | code_er | math | math_er |
|---|---|---|---|---|---|---|
| BF16 | 8.8830 | 0.2056 | 1.5469 | 0.0122 | 6.7086 | 0.1369 |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 8.8766 | 0.2053 | 1.5463 | 0.0122 | 6.7119 | 0.1368 |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 8.8712 | 0.2051 | 1.5476 | 0.0122 | 6.7113 | 0.1368 |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 8.8564 | 0.2036 | 1.5473 | 0.0122 | 6.6976 | 0.1358 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 9.0127 | 0.2057 | 1.5546 | 0.0119 | 6.6919 | 0.1331 |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 9.0490 | 0.2096 | 1.5535 | 0.0121 | 6.7221 | 0.1358 |
| IQ4_NL | 8.9948 | 0.2072 | 1.5600 | 0.0123 | 6.7484 | 0.1362 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 9.0487 | 0.2082 | 1.5611 | 0.0122 | 6.7317 | 0.1350 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 9.0419 | 0.2084 | 1.5615 | 0.0122 | 6.7602 | 0.1361 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 9.2104 | 0.2106 | 1.5598 | 0.0119 | 6.8261 | 0.1363 |
- gen = ppl_general, code = ppl_code, math = ppl_math
Table - Precision Loss Columns
| model_name | loss_general | loss_code | loss_math |
|---|---|---|---|
| BF16 | 0.0000 | 0.0000 | 0.0000 |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 0.0720 | 0.0388 | 0.0492 |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 0.1328 | 0.0453 | 0.0402 |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 0.2994 | 0.0259 | 0.1640 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 1.4601 | 0.4978 | 0.2489 |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 1.8687 | 0.4267 | 0.2012 |
| IQ4_NL | 1.2586 | 0.8469 | 0.5933 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 1.8654 | 0.9180 | 0.3443 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 1.7888 | 0.9438 | 0.7692 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 3.6857 | 0.8339 | 1.7515 |
- loss_* values are absolute precision-loss % vs BF16 per domain.