File size: 6,376 Bytes
5b3b88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Hybrid Naming Scheme & Benchmark Synopsis

This report summarizes baseline and hybrid quantization results for `Qwen3-4B-Instruct-2507-unsloth` as measured by the Magic Quant pipeline.

## Naming Scheme

Model variants follow a structured suffix convention that encodes both the base conversion mode and per-tensor quantization schemes.

| Suffix Example | Meaning |
| -------------- | ------- |
| `BF16` | Pure full-precision family baseline (no quantization). |
| `Q8_0`, `Q6_K`, `Q5_K`, `Q4_K_M`, `IQ4_NL`, `MXFP4_MOE` | Pure model-wide quantization baselines. |
| `iq4_nl-emb_Q4_K-head_Q4_K-moe_rt_Q4_K` | Base conversion mode `iq4_nl` with per-group schemes: embeddings (`emb_`), output head (`head_`), MoE router (`moe_rt_`). |
| `...-aq_F16-akv_Q8_0-fd_Q4_K-ao_Q5_K` | Extended sensitivity groups: Attention Q (`aq_`), Attention K+V (`akv_`), FFN Down (`fd_`), Attention Output (`ao_`). |
| `mxfp4_moe-emb_IQ4_NL-head_Q6_K-moe_exp_MXFP4-moe_rt_Q6_K` | MXFP4-centric hybrids with MoE expert group (`moe_exp_`) and mixed IQ / Q-schemes per tensor group. |

In general, anything after the base model name is a purely mechanical description of **how** the weights were transformed, not a new training run.

---

## Benchmark Methodology

All models were tested with a unified automated harness using `llama.cpp` tools.

**Included tests:**

- **Throughput:**  
    `llama-bench` with descending GPU offload (`-ngl 35 → 0`) and automatic OOM retry.  
    Highest successful TPS is recorded.

- **Perplexity:**  
    Three domains: **general**, **code**, **math**.  
    Each uses an auto-generated corpus of ~**32k tokens**.  
    Perplexity is computed with `llama-perplexity` at **2048-token** context.  
    Same GPU retry logic as above.

- **Precision loss:**  
    Each model is compared to its **family BF16 baseline**.  
    Precision-loss % is computed for all PPL domains, plus an averaged score.  
    Models are ranked by this metric.

---

### Table - Overview of Results

Comparing to BF16.

| model_name | size_reduction | tps_change |
| ---------- | -------------- | ---------- |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 46.93% | 46.64% |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 48.00% | 39.41% |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 59.60% | 68.19% |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 69.60% | 61.56% |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 65.07% | 83.66% |
| IQ4_NL | 70.27% | 67.59% |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 70.67% | 70.40% |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 69.47% | 71.89% |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 72.00% | 103.44% |

* All percentages compared against the selected family BF16 baseline.

---

### Table - File Size + TPS + Avg Precision Loss

| model_name | file_size_gb | bench_tps | avg_prec_loss |
| ---------- | ------------ | --------- | ------------- |
| BF16 | 7.50 | 254.70 | 0.0000 |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 3.98 | 373.48 | 0.0533 |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 3.90 | 355.09 | 0.0728 |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 3.03 | 428.37 | 0.1631 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 2.28 | 411.49 | 0.7356 |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 2.62 | 467.79 | 0.8322 |
| IQ4_NL | 2.23 | 426.86 | 0.8996 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 2.20 | 434.01 | 1.0426 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 2.29 | 437.81 | 1.1673 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 2.10 | 518.15 | 2.0904 |

* `avg_prec_loss` is the averaged absolute precision-loss % vs BF16.

---

### Table - PPL Columns

| model_name | gen | gen_er | code | code_er | math | math_er |
| ---------- | --- | ------ | ---- | ------- | ---- | ------- |
| BF16 | 8.8830 | 0.2056 | 1.5469 | 0.0122 | 6.7086 | 0.1369 |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 8.8766 | 0.2053 | 1.5463 | 0.0122 | 6.7119 | 0.1368 |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 8.8712 | 0.2051 | 1.5476 | 0.0122 | 6.7113 | 0.1368 |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 8.8564 | 0.2036 | 1.5473 | 0.0122 | 6.6976 | 0.1358 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 9.0127 | 0.2057 | 1.5546 | 0.0119 | 6.6919 | 0.1331 |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 9.0490 | 0.2096 | 1.5535 | 0.0121 | 6.7221 | 0.1358 |
| IQ4_NL | 8.9948 | 0.2072 | 1.5600 | 0.0123 | 6.7484 | 0.1362 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 9.0487 | 0.2082 | 1.5611 | 0.0122 | 6.7317 | 0.1350 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 9.0419 | 0.2084 | 1.5615 | 0.0122 | 6.7602 | 0.1361 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 9.2104 | 0.2106 | 1.5598 | 0.0119 | 6.8261 | 0.1363 |

* gen = ppl_general, code = ppl_code, math = ppl_math

---

### Table - Precision Loss Columns

| model_name | loss_general | loss_code | loss_math |
| ---------- | ------------ | --------- | --------- |
| BF16 | 0.0000 | 0.0000 | 0.0000 |
| mxfp4_moe-akv_BF16-ao_Q6_K-aq_Q6_K-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 0.0720 | 0.0388 | 0.0492 |
| mxfp4_moe-akv_Q8_0-ao_Q6_K-aq_Q8_0-emb_Q8_0-fd_Q8_0-fug_Q8_0 | 0.1328 | 0.0453 | 0.0402 |
| mxfp4_moe-akv_Q6_K-ao_Q5_K-aq_Q6_K-emb_Q6_K-fd_Q6_K-fug_Q6_K | 0.2994 | 0.0259 | 0.1640 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_Q8_0-fd_IQ4_NL-fug_IQ4_NL | 1.4601 | 0.4978 | 0.2489 |
| mxfp4_moe-akv_BF16-ao_MXFP4-aq_IQ4_NL-emb_Q5_K-fd_Q6_K-fug_IQ4_NL | 1.8687 | 0.4267 | 0.2012 |
| IQ4_NL | 1.2586 | 0.8469 | 0.5933 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_IQ4_NL-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 1.8654 | 0.9180 | 0.3443 |
| mxfp4_moe-akv_IQ4_NL-ao_MXFP4-aq_Q6_K-emb_Q6_K-fd_IQ4_NL-fug_IQ4_NL | 1.7888 | 0.9438 | 0.7692 |
| mxfp4_moe-akv_MXFP4-ao_MXFP4-aq_IQ4_NL-emb_IQ4_NL-fd_IQ4_NL-fug_IQ4_NL | 3.6857 | 0.8339 | 1.7515 |

* loss_* values are absolute precision-loss % vs BF16 per domain.