Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Paper
•
2512.04844
•
Published
•
4
This model is built on top of OLMo 2 1124 13B Instruct adapted for Hausa using 200M target language tokens sampled from MADLAD-400. The model is adapted using the AdaLoRA approach. This is based on https://arxiv.org/abs/2303.10512 and was the best-performing LoRA-based method in the HFT paper.
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
base_model = AutoModelForCausalLM.from_pretrained(
"allenai/OLMo-2-1124-13B-Instruct",
)
model = PeftModel.from_pretrained(
base_model,
"ssu-project/OLMo-2-1124-13B-Instruct-ha-adalora",
)
model = model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(
"allenai/OLMo-2-1124-13B-Instruct"
)
@misc{yamaguchi2025mitigatingcatastrophicforgettingtarget,
title={Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates},
author={Atsuki Yamaguchi and Terufumi Morishita and Aline Villavicencio and Nikolaos Aletras},
year={2025},
eprint={2512.04844},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2512.04844},
}
Base model
allenai/OLMo-2-1124-7B