tmdgur24 commited on
Commit
9673976
Β·
1 Parent(s): 6942732
Files changed (3) hide show
  1. README.md +3 -3
  2. app.py +30 -24
  3. labels.txt +150 -18
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- title: Machine Learning
3
- emoji: πŸ‘
4
- colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.49.1
 
1
  ---
2
+ title: Segmentation
3
+ emoji: πŸ“š
4
+ colorFrom: red
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.49.1
app.py CHANGED
@@ -6,31 +6,38 @@ from PIL import Image
6
  import torch
7
  from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
8
 
9
- MODEL_ID = "mattmdjaga/segformer_b2_clothes"
10
  processor = AutoImageProcessor.from_pretrained(MODEL_ID)
11
  model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
12
 
13
  def ade_palette():
14
  """ADE20K palette that maps each class to RGB values."""
15
  return [
16
- [0, 0, 0], # background
17
- [255, 0, 0], # hat
18
- [255, 255, 0], # hair
19
- [0, 255, 255], # sunglasses
20
- [0, 128, 255], # upper-clothes
21
- [255, 0, 255], # skirt
22
- [0, 200, 0], # pants
23
- [255, 128, 0], # dress
24
- [128, 0, 255], # belt
25
- [255, 192, 203], # left-shoe
26
- [255, 165, 0], # right-shoe
27
- [180, 180, 180], # face
28
- [0, 100, 0], # left-leg
29
- [34, 139, 34], # right-leg
30
- [70, 130, 180], # left-arm
31
- [25, 25, 112], # right-arm
32
- [210, 105, 30], # bag
33
- [123, 104, 238], # scarf
 
 
 
 
 
 
 
34
  ]
35
 
36
  labels_list = []
@@ -97,11 +104,10 @@ demo = gr.Interface(
97
  inputs=gr.Image(type="numpy", label="Input Image"),
98
  outputs=gr.Plot(label="Overlay + Legend"),
99
  examples=[
100
- "person-1.jpg",
101
- "person-2.jpg",
102
- "person-3.jpg",
103
- "person-4.jpg",
104
- "person-5.jpg"
105
  ],
106
  flagging_mode="never",
107
  cache_examples=False,
 
6
  import torch
7
  from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
8
 
9
+ MODEL_ID = "nvidia/segformer-b5-finetuned-ade-640-640"
10
  processor = AutoImageProcessor.from_pretrained(MODEL_ID)
11
  model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
12
 
13
  def ade_palette():
14
  """ADE20K palette that maps each class to RGB values."""
15
  return [
16
+ [204, 87, 92],[112, 185, 212],[45, 189, 106],[234, 123, 67],[78, 56, 123],[210, 32, 89],
17
+ [90, 180, 56],[155, 102, 200],[33, 147, 176],[255, 183, 76],[67, 123, 89],[190, 60, 45],
18
+ [134, 112, 200],[56, 45, 189],[200, 56, 123],[87, 92, 204],[120, 56, 123],[45, 78, 123],
19
+ [156, 200, 56],[32, 90, 210],[56, 123, 67],[180, 56, 123],[123, 67, 45],[45, 134, 200],
20
+ [67, 56, 123],[78, 123, 67],[32, 210, 90],[45, 56, 189],[123, 56, 123],[56, 156, 200],
21
+ [189, 56, 45],[112, 200, 56],[56, 123, 45],[200, 32, 90],[123, 45, 78],[200, 156, 56],
22
+ [45, 67, 123],[56, 45, 78],[45, 56, 123],[123, 67, 56],[56, 78, 123],[210, 90, 32],
23
+ [123, 56, 189],[45, 200, 134],[67, 123, 56],[123, 45, 67],[90, 32, 210],[200, 45, 78],
24
+ [32, 210, 90],[45, 123, 67],[165, 42, 87],[72, 145, 167],[15, 158, 75],[209, 89, 40],
25
+ [32, 21, 121],[184, 20, 100],[56, 135, 15],[128, 92, 176],[1, 119, 140],[220, 151, 43],
26
+ [41, 97, 72],[148, 38, 27],[107, 86, 176],[21, 26, 136],[174, 27, 90],[91, 96, 204],
27
+ [108, 50, 107],[27, 45, 136],[168, 200, 52],[7, 102, 27],[42, 93, 56],[140, 52, 112],
28
+ [92, 107, 168],[17, 118, 176],[59, 50, 174],[206, 40, 143],[44, 19, 142],[23, 168, 75],
29
+ [54, 57, 189],[144, 21, 15],[15, 176, 35],[107, 19, 79],[204, 52, 114],[48, 173, 83],
30
+ [11, 120, 53],[206, 104, 28],[20, 31, 153],[27, 21, 93],[11, 206, 138],[112, 30, 83],
31
+ [68, 91, 152],[153, 13, 43],[25, 114, 54],[92, 27, 150],[108, 42, 59],[194, 77, 5],
32
+ [145, 48, 83],[7, 113, 19],[25, 92, 113],[60, 168, 79],[78, 33, 120],[89, 176, 205],
33
+ [27, 200, 94],[210, 67, 23],[123, 89, 189],[225, 56, 112],[75, 156, 45],[172, 104, 200],
34
+ [15, 170, 197],[240, 133, 65],[89, 156, 112],[214, 88, 57],[156, 134, 200],[78, 57, 189],
35
+ [200, 78, 123],[106, 120, 210],[145, 56, 112],[89, 120, 189],[185, 206, 56],[47, 99, 28],
36
+ [112, 189, 78],[200, 112, 89],[89, 145, 112],[78, 106, 189],[112, 78, 189],[156, 112, 78],
37
+ [28, 210, 99],[78, 89, 189],[189, 78, 57],[112, 200, 78],[189, 47, 78],[205, 112, 57],
38
+ [78, 145, 57],[200, 78, 112],[99, 89, 145],[200, 156, 78],[57, 78, 145],[78, 57, 99],
39
+ [57, 78, 145],[145, 112, 78],[78, 89, 145],[210, 99, 28],[145, 78, 189],[57, 200, 136],
40
+ [89, 156, 78],[145, 78, 99],[99, 28, 210],[189, 78, 47],[28, 210, 99],[78, 145, 57],
41
  ]
42
 
43
  labels_list = []
 
104
  inputs=gr.Image(type="numpy", label="Input Image"),
105
  outputs=gr.Plot(label="Overlay + Legend"),
106
  examples=[
107
+ "ADE_val_00000001.jpeg",
108
+ "ADE_val_00001159.jpg",
109
+ "ADE_val_00001248.jpg",
110
+ "ADE_val_00001472.jpg"
 
111
  ],
112
  flagging_mode="never",
113
  cache_examples=False,
labels.txt CHANGED
@@ -1,18 +1,150 @@
1
- Background
2
- Hat
3
- Hair
4
- Sunglasses
5
- Upper-clothes
6
- Skirt
7
- Pants
8
- Dress
9
- Belt
10
- Left-shoe
11
- Right-shoe
12
- Face
13
- Left-leg
14
- Right-leg
15
- Left-arm
16
- Right-arm
17
- Bag
18
- Scarf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wall
2
+ building
3
+ sky
4
+ floor
5
+ tree
6
+ ceiling
7
+ road
8
+ bed
9
+ windowpane
10
+ grass
11
+ cabinet
12
+ sidewalk
13
+ person
14
+ earth
15
+ door
16
+ table
17
+ mountain
18
+ plant
19
+ curtain
20
+ chair
21
+ car
22
+ water
23
+ painting
24
+ sofa
25
+ shelf
26
+ house
27
+ sea
28
+ mirror
29
+ rug
30
+ field
31
+ armchair
32
+ seat
33
+ fence
34
+ desk
35
+ rock
36
+ wardrobe
37
+ lamp
38
+ bathtub
39
+ railing
40
+ cushion
41
+ base
42
+ box
43
+ column
44
+ signboard
45
+ chest of drawers
46
+ counter
47
+ sand
48
+ sink
49
+ skyscraper
50
+ fireplace
51
+ refrigerator
52
+ grandstand
53
+ path
54
+ stairs
55
+ runway
56
+ case
57
+ pool table
58
+ pillow
59
+ screen door
60
+ stairway
61
+ river
62
+ bridge
63
+ bookcase
64
+ blind
65
+ coffee table
66
+ toilet
67
+ flower
68
+ book
69
+ hill
70
+ bench
71
+ countertop
72
+ stove
73
+ palm
74
+ kitchen island
75
+ computer
76
+ swivel chair
77
+ boat
78
+ bar
79
+ arcade machine
80
+ hovel
81
+ bus
82
+ towel
83
+ light
84
+ truck
85
+ tower
86
+ chandelier
87
+ awning
88
+ streetlight
89
+ booth
90
+ television receiver
91
+ airplane
92
+ dirt track
93
+ apparel
94
+ pole
95
+ land
96
+ bannister
97
+ escalator
98
+ ottoman
99
+ bottle
100
+ buffet
101
+ poster
102
+ stage
103
+ van
104
+ ship
105
+ fountain
106
+ conveyer belt
107
+ canopy
108
+ washer
109
+ plaything
110
+ swimming pool
111
+ stool
112
+ barrel
113
+ basket
114
+ waterfall
115
+ tent
116
+ bag
117
+ minibike
118
+ cradle
119
+ oven
120
+ ball
121
+ food
122
+ step
123
+ tank
124
+ trade name
125
+ microwave
126
+ pot
127
+ animal
128
+ bicycle
129
+ lake
130
+ dishwasher
131
+ screen
132
+ blanket
133
+ sculpture
134
+ hood
135
+ sconce
136
+ vase
137
+ traffic light
138
+ tray
139
+ ashcan
140
+ fan
141
+ pier
142
+ crt screen
143
+ plate
144
+ monitor
145
+ bulletin board
146
+ shower
147
+ radiator
148
+ glass
149
+ clock
150
+ flag