tmdgur24 commited on
Commit
6942732
Β·
1 Parent(s): 41f8b40
Files changed (9) hide show
  1. README.md +4 -4
  2. app.py +111 -0
  3. labels.txt +18 -0
  4. person-1.jpg +0 -0
  5. person-2.jpg +0 -0
  6. person-3.jpg +0 -0
  7. person-4.jpg +0 -0
  8. person-5.jpg +0 -0
  9. requirements.txt +6 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Machine Learning2
3
- emoji: πŸ¦€
4
- colorFrom: red
5
- colorTo: gray
6
  sdk: gradio
7
  sdk_version: 5.49.1
8
  app_file: app.py
 
1
  ---
2
+ title: Machine Learning
3
+ emoji: πŸ‘
4
+ colorFrom: purple
5
+ colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.49.1
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from matplotlib import gridspec
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ from PIL import Image
6
+ import torch
7
+ from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
8
+
9
+ MODEL_ID = "mattmdjaga/segformer_b2_clothes"
10
+ processor = AutoImageProcessor.from_pretrained(MODEL_ID)
11
+ model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
12
+
13
+ def ade_palette():
14
+ """ADE20K palette that maps each class to RGB values."""
15
+ return [
16
+ [0, 0, 0], # background
17
+ [255, 0, 0], # hat
18
+ [255, 255, 0], # hair
19
+ [0, 255, 255], # sunglasses
20
+ [0, 128, 255], # upper-clothes
21
+ [255, 0, 255], # skirt
22
+ [0, 200, 0], # pants
23
+ [255, 128, 0], # dress
24
+ [128, 0, 255], # belt
25
+ [255, 192, 203], # left-shoe
26
+ [255, 165, 0], # right-shoe
27
+ [180, 180, 180], # face
28
+ [0, 100, 0], # left-leg
29
+ [34, 139, 34], # right-leg
30
+ [70, 130, 180], # left-arm
31
+ [25, 25, 112], # right-arm
32
+ [210, 105, 30], # bag
33
+ [123, 104, 238], # scarf
34
+ ]
35
+
36
+ labels_list = []
37
+ with open("labels.txt", "r", encoding="utf-8") as fp:
38
+ for line in fp:
39
+ labels_list.append(line.rstrip("\n"))
40
+
41
+ colormap = np.asarray(ade_palette(), dtype=np.uint8)
42
+
43
+ def label_to_color_image(label):
44
+ if label.ndim != 2:
45
+ raise ValueError("Expect 2-D input label")
46
+ if np.max(label) >= len(colormap):
47
+ raise ValueError("label value too large.")
48
+ return colormap[label]
49
+
50
+ def draw_plot(pred_img, seg_np):
51
+ fig = plt.figure(figsize=(20, 15))
52
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
53
+
54
+ plt.subplot(grid_spec[0])
55
+ plt.imshow(pred_img)
56
+ plt.axis('off')
57
+
58
+ LABEL_NAMES = np.asarray(labels_list)
59
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
60
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
61
+
62
+ unique_labels = np.unique(seg_np.astype("uint8"))
63
+ ax = plt.subplot(grid_spec[1])
64
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
65
+ ax.yaxis.tick_right()
66
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
67
+ plt.xticks([], [])
68
+ ax.tick_params(width=0.0, labelsize=25)
69
+ return fig
70
+
71
+ def run_inference(input_img):
72
+ # input: numpy array from gradio -> PIL
73
+ img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
74
+ if img.mode != "RGB":
75
+ img = img.convert("RGB")
76
+
77
+ inputs = processor(images=img, return_tensors="pt")
78
+ with torch.no_grad():
79
+ outputs = model(**inputs)
80
+ logits = outputs.logits # (1, C, h/4, w/4)
81
+
82
+ # resize to original
83
+ upsampled = torch.nn.functional.interpolate(
84
+ logits, size=img.size[::-1], mode="bilinear", align_corners=False
85
+ )
86
+ seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W)
87
+
88
+ # colorize & overlay
89
+ color_seg = colormap[seg] # (H,W,3)
90
+ pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
91
+
92
+ fig = draw_plot(pred_img, seg)
93
+ return fig
94
+
95
+ demo = gr.Interface(
96
+ fn=run_inference,
97
+ inputs=gr.Image(type="numpy", label="Input Image"),
98
+ outputs=gr.Plot(label="Overlay + Legend"),
99
+ examples=[
100
+ "person-1.jpg",
101
+ "person-2.jpg",
102
+ "person-3.jpg",
103
+ "person-4.jpg",
104
+ "person-5.jpg"
105
+ ],
106
+ flagging_mode="never",
107
+ cache_examples=False,
108
+ )
109
+
110
+ if __name__ == "__main__":
111
+ demo.launch()
labels.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Background
2
+ Hat
3
+ Hair
4
+ Sunglasses
5
+ Upper-clothes
6
+ Skirt
7
+ Pants
8
+ Dress
9
+ Belt
10
+ Left-shoe
11
+ Right-shoe
12
+ Face
13
+ Left-leg
14
+ Right-leg
15
+ Left-arm
16
+ Right-arm
17
+ Bag
18
+ Scarf
person-1.jpg ADDED
person-2.jpg ADDED
person-3.jpg ADDED
person-4.jpg ADDED
person-5.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers>=4.41.0
3
+ gradio>=4.0.0
4
+ Pillow
5
+ numpy
6
+ matplotlib