Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import torch | |
| from aurora import Aurora, Batch, Metadata | |
| import numpy as np | |
| from datetime import datetime | |
| def aurora_config_ui(): | |
| st.subheader("Aurora Model Data Input") | |
| # Detailed data description section | |
| st.markdown(""" | |
| **Available Models & Usage:** | |
| Aurora provides several pretrained and fine-tuned models at 0.25° and 0.1° resolutions. | |
| Models and weights are available through the HuggingFace repository: [microsoft/aurora](https://huggingface.co/microsoft/aurora). | |
| **Aurora 0.25° Pretrained** | |
| - Trained on a variety of data. | |
| - Suitable if no fine-tuned version exists for your dataset or to fine-tune Aurora yourself. | |
| - Use if your dataset is ERA5 at 0.25° resolution (721x1440). | |
| **Aurora 0.25° Pretrained Small** | |
| - A smaller version of the pretrained model for debugging purposes. | |
| **Aurora 0.25° Fine-Tuned** | |
| - Fine-tuned on IFS HRES T0. | |
| - Best performance at 0.25° but should only be used for IFS HRES T0 data. | |
| - May not give optimal results for other datasets. | |
| **Aurora 0.1° Fine-Tuned** | |
| - For IFS HRES T0 at 0.1° resolution (1801x3600). | |
| - Best performing at 0.1° resolution. | |
| - Data must match IFS HRES T0 conditions. | |
| **Required Variables & Pressure Levels:** | |
| For all Aurora models at these resolutions, the following inputs are required: | |
| - **Surface-level variables:** 2t, 10u, 10v, msl | |
| - **Static variables:** lsm, slt, z | |
| - **Atmospheric variables:** t, u, v, q, z | |
| - **Pressure levels (hPa):** 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000 | |
| Latitude range should decrease from 90°N to -90°S, and longitude range from 0° to 360° (excluding 360°). Data should be in single precision float32. | |
| **Data Format (Batch):** | |
| Data should be provided as a `aurora.Batch` object: | |
| - `surf_vars` dict with shape (b, t, h, w) | |
| - `static_vars` dict with shape (h, w) | |
| - `atmos_vars` dict with shape (b, t, c, h, w) | |
| - `metadata` containing lat, lon, time, and atmos_levels. | |
| For detailed instructions and examples, refer to the official Aurora documentation and code repository. | |
| """) | |
| # File uploader for Aurora data | |
| st.markdown("### Upload Your Input Data Files for Aurora") | |
| st.markdown("Upload the NetCDF files (e.g., `.nc`, `.netcdf`, `.nc4`) containing the required variables.") | |
| uploaded_files = st.file_uploader( | |
| "Drag and drop or select multiple .nc files", | |
| accept_multiple_files=True, | |
| key="aurora_uploader", | |
| type=["nc", "netcdf", "nc4"] | |
| ) | |
| st.markdown("---") | |
| st.markdown("### References & Resources") | |
| st.markdown(""" | |
| - **HuggingFace Repository:** [microsoft/aurora](https://huggingface.co/microsoft/aurora) | |
| - **Model Usage Examples:** | |
| ```python | |
| from aurora import Aurora | |
| model = Aurora() | |
| model.load_checkpoint("microsoft/aurora", "aurora-0.25-pretrained.ckpt") | |
| ``` | |
| - **API & Documentation:** Refer to the Aurora official GitHub and HuggingFace pages for detailed instructions. | |
| """) | |
| return uploaded_files | |
| def prepare_aurora_batch(ds): | |
| desired_levels = [50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000] | |
| # Ensure that the 'lev' dimension exists | |
| if 'lev' not in ds.dims: | |
| raise ValueError("The dataset does not contain a 'lev' (pressure level) dimension.") | |
| # Define the _prepare function | |
| def _prepare(x: np.ndarray, i: int) -> torch.Tensor: | |
| # Select previous and current time steps | |
| selected = x[[i - 6, i]] | |
| # Add a batch dimension | |
| selected = selected[None] | |
| # Ensure data is contiguous | |
| selected = selected.copy() | |
| # Convert to PyTorch tensor | |
| return torch.from_numpy(selected) | |
| # Adjust latitudes and longitudes | |
| lat = ds.lat.values * -1 | |
| lon = ds.lon.values + 180 | |
| # Subset the dataset to only include the desired pressure levels | |
| ds_subset = ds.sel(lev=desired_levels, method="nearest") | |
| # Verify that all desired levels are present | |
| present_levels = ds_subset.lev.values | |
| missing_levels = set(desired_levels) - set(present_levels) | |
| if missing_levels: | |
| raise ValueError(f"The following desired pressure levels are missing in the dataset: {missing_levels}") | |
| # Extract pressure levels after subsetting | |
| lev = ds_subset.lev.values # Pressure levels in hPa | |
| # Prepare surface variables at 1000 hPa | |
| try: | |
| lev_index_1000 = np.where(lev == 1000)[0][0] | |
| except IndexError: | |
| raise ValueError("1000 hPa level not found in the 'lev' dimension after subsetting.") | |
| T_surface = ds_subset.T.isel(lev=lev_index_1000).compute() | |
| U_surface = ds_subset.U.isel(lev=lev_index_1000).compute() | |
| V_surface = ds_subset.V.isel(lev=lev_index_1000).compute() | |
| SLP = ds_subset.SLP.compute() | |
| # Reorder static variables (selecting the first time index to remove the time dimension) | |
| PHIS = ds_subset.PHIS.isel(time=0).compute() | |
| # Prepare atmospheric variables for the desired pressure levels excluding 1000 hPa | |
| atmos_levels = [int(level) for level in lev if level != 1000] | |
| T_atm = (ds_subset.T.sel(lev=atmos_levels)).compute() | |
| U_atm = (ds_subset.U.sel(lev=atmos_levels)).compute() | |
| V_atm = (ds_subset.V.sel(lev=atmos_levels)).compute() | |
| # Select time index | |
| num_times = ds_subset.time.size | |
| i = 6 # Adjust as needed (1 <= i < num_times) | |
| if i >= num_times or i < 1: | |
| raise IndexError("Time index i is out of bounds.") | |
| time_values = ds_subset.time.values | |
| current_time = np.datetime64(time_values[i]).astype('datetime64[s]').astype(datetime) | |
| # Prepare surface variables | |
| surf_vars = { | |
| "2t": _prepare(T_surface.values, i), # Two-meter temperature | |
| "10u": _prepare(U_surface.values, i), # Ten-meter eastward wind | |
| "10v": _prepare(V_surface.values, i), # Ten-meter northward wind | |
| "msl": _prepare(SLP.values, i), # Mean sea-level pressure | |
| } | |
| # Prepare static variables (now 2D tensors) | |
| static_vars = { | |
| "z": torch.from_numpy(PHIS.values.copy()), # Geopotential (h, w) | |
| # Add 'lsm' and 'slt' if available and needed | |
| } | |
| # Prepare atmospheric variables | |
| atmos_vars = { | |
| "t": _prepare(T_atm.values, i), # Temperature at desired levels | |
| "u": _prepare(U_atm.values, i), # Eastward wind at desired levels | |
| "v": _prepare(V_atm.values, i), # Southward wind at desired levels | |
| } | |
| # Define metadata | |
| metadata = Metadata( | |
| lat=torch.from_numpy(lat.copy()), | |
| lon=torch.from_numpy(lon.copy()), | |
| time=(current_time,), | |
| atmos_levels=tuple(atmos_levels), # Only the desired atmospheric levels | |
| ) | |
| # Create the Batch object | |
| batch = Batch( | |
| surf_vars=surf_vars, | |
| static_vars=static_vars, | |
| atmos_vars=atmos_vars, | |
| metadata=metadata | |
| ) # Display the dataset or perform further processing | |
| return batch | |
| def initialize_aurora_model(device): | |
| model = Aurora(use_lora=False) | |
| # Load pretrained checkpoint if available | |
| model.load_checkpoint("microsoft/aurora", "aurora-0.25-pretrained.ckpt") | |
| model = model.to(device) | |
| return model | |