Spaces:
Runtime error
Runtime error
roll back
Browse files- app.py +10 -1
- aurora_utils.py +68 -3
app.py
CHANGED
|
@@ -56,7 +56,7 @@ with header_col2:
|
|
| 56 |
st.markdown("### Select a Model")
|
| 57 |
selected_model = st.selectbox(
|
| 58 |
"",
|
| 59 |
-
options=["Pangu-Weather", "FengWu", "Aurora", "Climax", "Prithvi", "LSTM"],
|
| 60 |
index=0,
|
| 61 |
key="model_selector",
|
| 62 |
help="Select the model you want to use."
|
|
@@ -74,6 +74,15 @@ with left_col:
|
|
| 74 |
if selected_model == "Prithvi":
|
| 75 |
(config, uploaded_surface_files, uploaded_vertical_files,
|
| 76 |
clim_surf_path, clim_vert_path, config_path, weights_path) = prithvi_config_ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
elif selected_model == "Aurora":
|
| 78 |
uploaded_files = aurora_config_ui()
|
| 79 |
elif selected_model == "Pangu-Weather":
|
|
|
|
| 56 |
st.markdown("### Select a Model")
|
| 57 |
selected_model = st.selectbox(
|
| 58 |
"",
|
| 59 |
+
options=["Pangu-Weather", "FengWu", "Aurora", "Climax", "Prithvi", "GEOS-Specific-LSTM", "GEOS-Finetuned-Climax"],
|
| 60 |
index=0,
|
| 61 |
key="model_selector",
|
| 62 |
help="Select the model you want to use."
|
|
|
|
| 74 |
if selected_model == "Prithvi":
|
| 75 |
(config, uploaded_surface_files, uploaded_vertical_files,
|
| 76 |
clim_surf_path, clim_vert_path, config_path, weights_path) = prithvi_config_ui()
|
| 77 |
+
elif selected_model == "Climax":
|
| 78 |
+
st.info("Climax model is not yet available.")
|
| 79 |
+
st.stop()
|
| 80 |
+
elif selected_model == "GEOS-Specific-LSTM":
|
| 81 |
+
st.info("GEOS-Specific-LSTM model is not yet available.")
|
| 82 |
+
st.stop()
|
| 83 |
+
elif selected_model == "GEOS-Finetuned-Climax":
|
| 84 |
+
st.info("GEOS-Finetuned-Climax model is not yet available.")
|
| 85 |
+
st.stop()
|
| 86 |
elif selected_model == "Aurora":
|
| 87 |
uploaded_files = aurora_config_ui()
|
| 88 |
elif selected_model == "Pangu-Weather":
|
aurora_utils.py
CHANGED
|
@@ -5,14 +5,79 @@ import numpy as np
|
|
| 5 |
from datetime import datetime
|
| 6 |
|
| 7 |
def aurora_config_ui():
|
| 8 |
-
st.subheader("Aurora Model Data
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
uploaded_files = st.file_uploader(
|
| 11 |
-
"
|
| 12 |
accept_multiple_files=True,
|
| 13 |
key="aurora_uploader",
|
| 14 |
type=["nc", "netcdf", "nc4"]
|
| 15 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
return uploaded_files
|
| 17 |
|
| 18 |
def prepare_aurora_batch(ds):
|
|
|
|
| 5 |
from datetime import datetime
|
| 6 |
|
| 7 |
def aurora_config_ui():
|
| 8 |
+
st.subheader("Aurora Model Data Input")
|
| 9 |
+
|
| 10 |
+
# Detailed data description section
|
| 11 |
+
st.markdown("""
|
| 12 |
+
**Available Models & Usage:**
|
| 13 |
+
|
| 14 |
+
Aurora provides several pretrained and fine-tuned models at 0.25° and 0.1° resolutions.
|
| 15 |
+
Models and weights are available through the HuggingFace repository: [microsoft/aurora](https://huggingface.co/microsoft/aurora).
|
| 16 |
+
|
| 17 |
+
**Aurora 0.25° Pretrained**
|
| 18 |
+
- Trained on a variety of data.
|
| 19 |
+
- Suitable if no fine-tuned version exists for your dataset or to fine-tune Aurora yourself.
|
| 20 |
+
- Use if your dataset is ERA5 at 0.25° resolution (721x1440).
|
| 21 |
+
|
| 22 |
+
**Aurora 0.25° Pretrained Small**
|
| 23 |
+
- A smaller version of the pretrained model for debugging purposes.
|
| 24 |
+
|
| 25 |
+
**Aurora 0.25° Fine-Tuned**
|
| 26 |
+
- Fine-tuned on IFS HRES T0.
|
| 27 |
+
- Best performance at 0.25° but should only be used for IFS HRES T0 data.
|
| 28 |
+
- May not give optimal results for other datasets.
|
| 29 |
+
|
| 30 |
+
**Aurora 0.1° Fine-Tuned**
|
| 31 |
+
- For IFS HRES T0 at 0.1° resolution (1801x3600).
|
| 32 |
+
- Best performing at 0.1° resolution.
|
| 33 |
+
- Data must match IFS HRES T0 conditions.
|
| 34 |
+
|
| 35 |
+
**Required Variables & Pressure Levels:**
|
| 36 |
+
|
| 37 |
+
For all Aurora models at these resolutions, the following inputs are required:
|
| 38 |
+
|
| 39 |
+
- **Surface-level variables:** 2t, 10u, 10v, msl
|
| 40 |
+
- **Static variables:** lsm, slt, z
|
| 41 |
+
- **Atmospheric variables:** t, u, v, q, z
|
| 42 |
+
- **Pressure levels (hPa):** 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000
|
| 43 |
+
|
| 44 |
+
Latitude range should decrease from 90°N to -90°S, and longitude range from 0° to 360° (excluding 360°). Data should be in single precision float32.
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
**Data Format (Batch):**
|
| 48 |
+
Data should be provided as a `aurora.Batch` object:
|
| 49 |
+
- `surf_vars` dict with shape (b, t, h, w)
|
| 50 |
+
- `static_vars` dict with shape (h, w)
|
| 51 |
+
- `atmos_vars` dict with shape (b, t, c, h, w)
|
| 52 |
+
- `metadata` containing lat, lon, time, and atmos_levels.
|
| 53 |
+
|
| 54 |
+
For detailed instructions and examples, refer to the official Aurora documentation and code repository.
|
| 55 |
+
""")
|
| 56 |
+
|
| 57 |
+
# File uploader for Aurora data
|
| 58 |
+
st.markdown("### Upload Your Input Data Files for Aurora")
|
| 59 |
+
st.markdown("Upload the NetCDF files (e.g., `.nc`, `.netcdf`, `.nc4`) containing the required variables.")
|
| 60 |
uploaded_files = st.file_uploader(
|
| 61 |
+
"Drag and drop or select multiple .nc files",
|
| 62 |
accept_multiple_files=True,
|
| 63 |
key="aurora_uploader",
|
| 64 |
type=["nc", "netcdf", "nc4"]
|
| 65 |
)
|
| 66 |
+
|
| 67 |
+
st.markdown("---")
|
| 68 |
+
st.markdown("### References & Resources")
|
| 69 |
+
st.markdown("""
|
| 70 |
+
- **HuggingFace Repository:** [microsoft/aurora](https://huggingface.co/microsoft/aurora)
|
| 71 |
+
- **Model Usage Examples:**
|
| 72 |
+
```python
|
| 73 |
+
from aurora import Aurora
|
| 74 |
+
|
| 75 |
+
model = Aurora()
|
| 76 |
+
model.load_checkpoint("microsoft/aurora", "aurora-0.25-pretrained.ckpt")
|
| 77 |
+
```
|
| 78 |
+
- **API & Documentation:** Refer to the Aurora official GitHub and HuggingFace pages for detailed instructions.
|
| 79 |
+
""")
|
| 80 |
+
|
| 81 |
return uploaded_files
|
| 82 |
|
| 83 |
def prepare_aurora_batch(ds):
|