|
|
import gradio as gr |
|
|
from matplotlib import gridspec |
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import torch |
|
|
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation |
|
|
|
|
|
MODEL_ID = "nvidia/segformer-b4-finetuned-cityscapes-1024-1024" |
|
|
processor = AutoImageProcessor.from_pretrained(MODEL_ID) |
|
|
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) |
|
|
|
|
|
|
|
|
def city_palette(): |
|
|
return [ |
|
|
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], |
|
|
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], |
|
|
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], |
|
|
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], |
|
|
] |
|
|
|
|
|
|
|
|
labels_list = [] |
|
|
with open("labels.txt", "r", encoding="utf-8") as fp: |
|
|
for line in fp: |
|
|
labels_list.append(line.rstrip("\n")) |
|
|
|
|
|
colormap = np.asarray(city_palette(), dtype=np.uint8) |
|
|
|
|
|
|
|
|
def label_to_color_image(label): |
|
|
if label.ndim != 2: |
|
|
raise ValueError("Expect 2-D input label") |
|
|
if np.max(label) >= len(colormap): |
|
|
raise ValueError("label value too large.") |
|
|
return colormap[label] |
|
|
|
|
|
|
|
|
def draw_plot(pred_img, seg_np): |
|
|
fig = plt.figure(figsize=(20, 15)) |
|
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
|
|
plt.subplot(grid_spec[0]) |
|
|
plt.imshow(pred_img) |
|
|
plt.axis('off') |
|
|
plt.title('Segmentation Result', fontsize=20, pad=20) |
|
|
|
|
|
LABEL_NAMES = np.asarray(labels_list) |
|
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
|
|
unique_labels = np.unique(seg_np.astype("uint8")) |
|
|
ax = plt.subplot(grid_spec[1]) |
|
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
|
ax.yaxis.tick_right() |
|
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
|
plt.xticks([], []) |
|
|
ax.tick_params(width=0.0, labelsize=25) |
|
|
plt.title('Detected Classes', fontsize=20, pad=20) |
|
|
return fig |
|
|
|
|
|
|
|
|
def run_inference(input_img): |
|
|
|
|
|
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img |
|
|
if img.mode != "RGB": |
|
|
img = img.convert("RGB") |
|
|
|
|
|
inputs = processor(images=img, return_tensors="pt") |
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
|
|
|
|
|
|
upsampled = torch.nn.functional.interpolate( |
|
|
logits, size=img.size[::-1], mode="bilinear", align_corners=False |
|
|
) |
|
|
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) |
|
|
|
|
|
|
|
|
color_seg = colormap[seg] |
|
|
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) |
|
|
|
|
|
fig = draw_plot(pred_img, seg) |
|
|
return fig |
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), title="๋์ ์ฅ๋ฉด ๋ถํ ") as demo: |
|
|
gr.Markdown( |
|
|
""" |
|
|
# ๋์ ์ฅ๋ฉด ์์ ๋ถํ (City Scene Segmentation) |
|
|
**Cityscapes ๋ฐ์ดํฐ์
์ผ๋ก ํ์ต๋ SegFormer ๋ชจ๋ธ**์ ํ์ฉํ ๋๋ก ๋ฐ ๋์ ์ฅ๋ฉด ๋ถํ ๋ฐ๋ชจ์
๋๋ค. |
|
|
|
|
|
๋๋ก, ๊ฑด๋ฌผ, ์ฐจ๋, ๋ณดํ์ ๋ฑ 19๊ฐ ํด๋์ค๋ฅผ ์๋์ผ๋ก ์ธ์ํ๊ณ ๋ถํ ํฉ๋๋ค. |
|
|
""" |
|
|
) |
|
|
|
|
|
gr.Markdown( |
|
|
""" |
|
|
--- |
|
|
### ๊ฐ์ง ๊ฐ๋ฅํ ํด๋์ค (19๊ฐ) |
|
|
`๋๋ก`, `๋ณด๋`, `๊ฑด๋ฌผ`, `๋ฒฝ`, `์ธํ๋ฆฌ`, `๊ธฐ๋ฅ`, `์ ํธ๋ฑ`, `ํ์งํ`, `์๋ฌผ`, |
|
|
`์งํ`, `ํ๋`, `์ฌ๋`, `์์ ๊ฑฐ ํ์น์`, `์๋์ฐจ`, `ํธ๋ญ`, `๋ฒ์ค`, `๊ธฐ์ฐจ`, `์คํ ๋ฐ์ด`, `์์ ๊ฑฐ` |
|
|
""" |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
input_img = gr.Image( |
|
|
type="numpy", |
|
|
label="์
๋ ฅ ์ด๋ฏธ์ง", |
|
|
height=400 |
|
|
) |
|
|
submit_btn = gr.Button( |
|
|
"๋ถํ ์คํ", |
|
|
variant="primary", |
|
|
size="lg" |
|
|
) |
|
|
|
|
|
gr.Markdown("### ์์ ์ด๋ฏธ์ง") |
|
|
gr.Examples( |
|
|
examples=[ |
|
|
"road-2.jpg", |
|
|
"road-3.jpeg", |
|
|
], |
|
|
inputs=input_img, |
|
|
label="๋์/๋๋ก ์ฅ๋ฉด ์ํ" |
|
|
) |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
output_plot = gr.Plot(label=" ๋ถํ ๊ฒฐ๊ณผ ๋ฐ ๋ฒ๋ก") |
|
|
|
|
|
|
|
|
|
|
|
submit_btn.click( |
|
|
fn=run_inference, |
|
|
inputs=input_img, |
|
|
outputs=output_plot |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |