File size: 4,530 Bytes
1eb0080 61db721 487ebdb 1eb0080 43d9531 1eb0080 61db721 1eb0080 487ebdb 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 1eb0080 61db721 7eac13f 61db721 7eac13f 61db721 7eac13f 61db721 7eac13f 61db721 7eac13f 61db721 7eac13f 61db721 1eb0080 61db721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
MODEL_ID = "nvidia/segformer-b4-finetuned-cityscapes-1024-1024"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
def city_palette():
return [
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153],
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152],
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32],
]
labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
for line in fp:
labels_list.append(line.rstrip("\n"))
colormap = np.asarray(city_palette(), dtype=np.uint8)
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg_np):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
plt.title('Segmentation Result', fontsize=20, pad=20)
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg_np.astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
plt.title('Detected Classes', fontsize=20, pad=20)
return fig
def run_inference(input_img):
# input: numpy array from gradio -> PIL
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
if img.mode != "RGB":
img = img.convert("RGB")
inputs = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# resize to original
upsampled = torch.nn.functional.interpolate(
logits, size=img.size[::-1], mode="bilinear", align_corners=False
)
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8)
# colorize & overlay
color_seg = colormap[seg]
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
with gr.Blocks(theme=gr.themes.Soft(), title="๋์ ์ฅ๋ฉด ๋ถํ ") as demo:
gr.Markdown(
"""
# ๋์ ์ฅ๋ฉด ์์ ๋ถํ (City Scene Segmentation)
**Cityscapes ๋ฐ์ดํฐ์
์ผ๋ก ํ์ต๋ SegFormer ๋ชจ๋ธ**์ ํ์ฉํ ๋๋ก ๋ฐ ๋์ ์ฅ๋ฉด ๋ถํ ๋ฐ๋ชจ์
๋๋ค.
๋๋ก, ๊ฑด๋ฌผ, ์ฐจ๋, ๋ณดํ์ ๋ฑ 19๊ฐ ํด๋์ค๋ฅผ ์๋์ผ๋ก ์ธ์ํ๊ณ ๋ถํ ํฉ๋๋ค.
"""
)
gr.Markdown(
"""
---
### ๊ฐ์ง ๊ฐ๋ฅํ ํด๋์ค (19๊ฐ)
`๋๋ก`, `๋ณด๋`, `๊ฑด๋ฌผ`, `๋ฒฝ`, `์ธํ๋ฆฌ`, `๊ธฐ๋ฅ`, `์ ํธ๋ฑ`, `ํ์งํ`, `์๋ฌผ`,
`์งํ`, `ํ๋`, `์ฌ๋`, `์์ ๊ฑฐ ํ์น์`, `์๋์ฐจ`, `ํธ๋ญ`, `๋ฒ์ค`, `๊ธฐ์ฐจ`, `์คํ ๋ฐ์ด`, `์์ ๊ฑฐ`
"""
)
with gr.Row():
with gr.Column(scale=1):
input_img = gr.Image(
type="numpy",
label="์
๋ ฅ ์ด๋ฏธ์ง",
height=400
)
submit_btn = gr.Button(
"๋ถํ ์คํ",
variant="primary",
size="lg"
)
gr.Markdown("### ์์ ์ด๋ฏธ์ง")
gr.Examples(
examples=[
"road-2.jpg",
"road-3.jpeg",
],
inputs=input_img,
label="๋์/๋๋ก ์ฅ๋ฉด ์ํ"
)
with gr.Column(scale=1):
output_plot = gr.Plot(label=" ๋ถํ ๊ฒฐ๊ณผ ๋ฐ ๋ฒ๋ก")
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
submit_btn.click(
fn=run_inference,
inputs=input_img,
outputs=output_plot
)
if __name__ == "__main__":
demo.launch() |