File size: 4,530 Bytes
1eb0080
 
 
 
 
 
 
 
 
 
 
 
61db721
487ebdb
1eb0080
43d9531
 
 
 
1eb0080
 
61db721
1eb0080
 
 
 
 
487ebdb
1eb0080
61db721
1eb0080
 
 
 
 
 
 
61db721
1eb0080
 
 
 
 
 
 
61db721
1eb0080
 
 
 
 
 
 
 
 
 
 
 
61db721
1eb0080
 
61db721
1eb0080
 
 
 
 
 
 
 
 
61db721
1eb0080
 
 
 
 
61db721
1eb0080
 
61db721
1eb0080
 
 
 
 
61db721
 
 
 
7eac13f
61db721
 
 
 
 
 
7eac13f
 
 
 
 
 
 
 
 
61db721
 
 
 
7eac13f
61db721
 
 
7eac13f
61db721
 
 
 
7eac13f
61db721
 
 
 
 
 
 
 
 
 
7eac13f
61db721
 
 
 
 
 
 
 
1eb0080
 
61db721
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation

MODEL_ID = "nvidia/segformer-b4-finetuned-cityscapes-1024-1024"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)


def city_palette():
    return [
        [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153],
        [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152],
        [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
        [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32],
    ]


labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
    for line in fp:
        labels_list.append(line.rstrip("\n"))

colormap = np.asarray(city_palette(), dtype=np.uint8)


def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")
    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]


def draw_plot(pred_img, seg_np):
    fig = plt.figure(figsize=(20, 15))
    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    plt.title('Segmentation Result', fontsize=20, pad=20)

    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg_np.astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    plt.title('Detected Classes', fontsize=20, pad=20)
    return fig


def run_inference(input_img):
    # input: numpy array from gradio -> PIL
    img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
    if img.mode != "RGB":
        img = img.convert("RGB")

    inputs = processor(images=img, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits

    # resize to original
    upsampled = torch.nn.functional.interpolate(
        logits, size=img.size[::-1], mode="bilinear", align_corners=False
    )
    seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8)

    # colorize & overlay
    color_seg = colormap[seg]
    pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig


with gr.Blocks(theme=gr.themes.Soft(), title="๋„์‹œ ์žฅ๋ฉด ๋ถ„ํ• ") as demo:
    gr.Markdown(
        """
        # ๋„์‹œ ์žฅ๋ฉด ์˜์ƒ ๋ถ„ํ•  (City Scene Segmentation)
        **Cityscapes ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต๋œ SegFormer ๋ชจ๋ธ**์„ ํ™œ์šฉํ•œ ๋„๋กœ ๋ฐ ๋„์‹œ ์žฅ๋ฉด ๋ถ„ํ•  ๋ฐ๋ชจ์ž…๋‹ˆ๋‹ค.

        ๋„๋กœ, ๊ฑด๋ฌผ, ์ฐจ๋Ÿ‰, ๋ณดํ–‰์ž ๋“ฑ 19๊ฐœ ํด๋ž˜์Šค๋ฅผ ์ž๋™์œผ๋กœ ์ธ์‹ํ•˜๊ณ  ๋ถ„ํ• ํ•ฉ๋‹ˆ๋‹ค.
        """
    )

    gr.Markdown(
        """
        ---
        ###  ๊ฐ์ง€ ๊ฐ€๋Šฅํ•œ ํด๋ž˜์Šค (19๊ฐœ)
        `๋„๋กœ`, `๋ณด๋„`, `๊ฑด๋ฌผ`, `๋ฒฝ`, `์šธํƒ€๋ฆฌ`, `๊ธฐ๋‘ฅ`, `์‹ ํ˜ธ๋“ฑ`, `ํ‘œ์ง€ํŒ`, `์‹๋ฌผ`, 
        `์ง€ํ˜•`, `ํ•˜๋Š˜`, `์‚ฌ๋žŒ`, `์ž์ „๊ฑฐ ํƒ‘์Šน์ž`, `์ž๋™์ฐจ`, `ํŠธ๋Ÿญ`, `๋ฒ„์Šค`, `๊ธฐ์ฐจ`, `์˜คํ† ๋ฐ”์ด`, `์ž์ „๊ฑฐ`
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            input_img = gr.Image(
                type="numpy",
                label="์ž…๋ ฅ ์ด๋ฏธ์ง€",
                height=400
            )
            submit_btn = gr.Button(
                "๋ถ„ํ•  ์‹คํ–‰",
                variant="primary",
                size="lg"
            )

            gr.Markdown("###  ์˜ˆ์‹œ ์ด๋ฏธ์ง€")
            gr.Examples(
                examples=[
                    "road-2.jpg",
                    "road-3.jpeg",
                ],
                inputs=input_img,
                label="๋„์‹œ/๋„๋กœ ์žฅ๋ฉด ์ƒ˜ํ”Œ"
            )

        with gr.Column(scale=1):
            output_plot = gr.Plot(label=" ๋ถ„ํ•  ๊ฒฐ๊ณผ ๋ฐ ๋ฒ”๋ก€")


    # ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
    submit_btn.click(
        fn=run_inference,
        inputs=input_img,
        outputs=output_plot
    )

if __name__ == "__main__":
    demo.launch()