Spaces:
Running
Running
| struct rope_corr_dims { | |
| float v[2]; | |
| }; | |
| struct mrope_sections { | |
| int v[4]; | |
| }; | |
| static float rope_yarn_ramp(const float low, const float high, const int i0) { | |
| const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low); | |
| return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y)); | |
| } | |
| // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn | |
| // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. | |
| static void rope_yarn( | |
| float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, | |
| float * cos_theta, float * sin_theta) { | |
| // Get n-d rotational scaling corrected for extrapolation | |
| float theta_interp = freq_scale * theta_extrap; | |
| float theta = theta_interp; | |
| if (ext_factor != 0.0f) { | |
| float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; | |
| theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; | |
| // Get n-d magnitude scaling corrected for interpolation | |
| mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale); | |
| } | |
| *cos_theta = sycl::cos(theta) * mscale; | |
| *sin_theta = sycl::sin(theta) * mscale; | |
| } | |
| template <typename T, bool has_ff> | |
| static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, | |
| const int32_t * pos, float freq_scale, float ext_factor, float attn_factor, | |
| const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, | |
| const sycl::nd_item<3> & item_ct1) { | |
| const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1)); | |
| if (i0 >= ne0) { | |
| return; | |
| } | |
| const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); | |
| const int row0 = row % ne1; | |
| const int channel0 = row / ne1; | |
| const int i = row * ne0 + i0; | |
| const int i2 = channel0 * s2 + row0 * s1 + i0; | |
| if (i0 >= n_dims) { | |
| *reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2); | |
| return; | |
| } | |
| const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f); | |
| const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; | |
| float cos_theta; | |
| float sin_theta; | |
| rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); | |
| const float x0 = x[i2 + 0]; | |
| const float x1 = x[i2 + 1]; | |
| dst[i + 0] = x0 * cos_theta - x1 * sin_theta; | |
| dst[i + 1] = x0 * sin_theta + x1 * cos_theta; | |
| } | |
| template <typename T, bool has_ff> | |
| static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, | |
| const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, | |
| const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, | |
| const sycl::nd_item<3> & item_ct1) { | |
| const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1)); | |
| if (i0 >= ne0) { | |
| return; | |
| } | |
| const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); | |
| const int row0 = row % ne1; | |
| const int channel0 = row / ne1; | |
| const int i = row * ne0 + i0 / 2; | |
| const int i2 = channel0 * s2 + row0 * s1 + i0 / 2; | |
| if (i0 >= n_dims) { | |
| *reinterpret_cast<sycl::vec<T, 2> *>(dst + i + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2 + i0 / 2); | |
| return; | |
| } | |
| const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f); | |
| const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; | |
| float cos_theta; | |
| float sin_theta; | |
| rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); | |
| const float x0 = x[i2 + 0]; | |
| const float x1 = x[i2 + n_dims / 2]; | |
| dst[i + 0] = x0 * cos_theta - x1 * sin_theta; | |
| dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta; | |
| } | |
| template <typename T, bool has_ff> | |
| static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, | |
| const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, | |
| const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, | |
| const float theta_scale, const float * freq_factors, const mrope_sections sections, | |
| const sycl::nd_item<3> & item_ct1) { | |
| // get index pos | |
| const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1)); | |
| if (i0 >= ne0) { | |
| return; | |
| } | |
| const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2); | |
| const int row_x = row_dst % ne1; | |
| const int channel_x = row_dst / ne1; | |
| const int idst = (row_dst * ne0) + (i0 / 2); | |
| const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2); | |
| if (i0 >= n_dims) { | |
| *reinterpret_cast<sycl::vec<T, 2> *>(dst + idst + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i0 / 2 + ix); | |
| return; | |
| } | |
| const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3]; | |
| const int sec_w = sections.v[1] + sections.v[0]; | |
| const int sector = (i0 / 2) % sect_dims; | |
| float theta_base = 0.0; | |
| if (sector < sections.v[0]) { | |
| theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f); | |
| } | |
| else if (sector >= sections.v[0] && sector < sec_w) { | |
| theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f); | |
| } | |
| else if (sector >= sec_w && sector < sec_w + sections.v[2]) { | |
| theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f); | |
| } | |
| else if (sector >= sec_w + sections.v[2]) { | |
| theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f); | |
| } | |
| const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; | |
| float cos_theta; | |
| float sin_theta; | |
| rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); | |
| const float x0 = x[ix + 0]; | |
| const float x1 = x[ix + n_dims/2]; | |
| // store results in dst | |
| dst[idst + 0] = x0 * cos_theta - x1 * sin_theta; | |
| dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta; | |
| } | |
| template <typename T, bool has_ff> | |
| static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, | |
| const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, | |
| const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, | |
| const float theta_scale, const float * freq_factors, const mrope_sections sections, | |
| const sycl::nd_item<3> & item_ct1) { | |
| // get index pos | |
| const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1)); | |
| if (i0 >= ne0) { | |
| return; | |
| } | |
| const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2); | |
| const int row_x = row_dst % ne1; | |
| const int channel_x = row_dst / ne1; | |
| const int idst = (row_dst * ne0) + (i0 / 2); | |
| const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2); | |
| const int sect_dims = sections.v[0] + sections.v[1]; | |
| const int sector = (i0 / 2) % sect_dims; | |
| float theta_base = 0.0f; | |
| if (sector < sections.v[0]) { | |
| const int p = sector; | |
| theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p); | |
| } else { | |
| // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0] | |
| const int p = sector - sections.v[0]; | |
| theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p); | |
| } | |
| const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; | |
| float cos_theta; | |
| float sin_theta; | |
| rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); | |
| const float x0 = x[ix + 0]; | |
| const float x1 = x[ix + n_dims]; | |
| // store results in dst | |
| dst[idst + 0] = x0 * cos_theta - x1 * sin_theta; | |
| dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta; | |
| } | |
| template <typename T> | |
| static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, | |
| const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base, | |
| const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, | |
| const float * freq_factors, queue_ptr stream) { | |
| GGML_ASSERT(ne0 % 2 == 0); | |
| const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); | |
| const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); | |
| const sycl::range<3> block_nums(1, num_blocks_x, nr); | |
| const float theta_scale = powf(freq_base, -2.0f / n_dims); | |
| dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); | |
| if (freq_factors == nullptr) { | |
| /* | |
| DPCT1049:40: The work-group size passed to the SYCL kernel may exceed | |
| the limit. To get the device limit, query | |
| info::device::max_work_group_size. Adjust the work-group size if needed. | |
| */ | |
| sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_norm<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, | |
| attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); | |
| }); | |
| } else { | |
| /* | |
| DPCT1049:41: The work-group size passed to the SYCL kernel may exceed | |
| the limit. To get the device limit, query | |
| info::device::max_work_group_size. Adjust the work-group size if needed. | |
| */ | |
| sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_norm<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, | |
| attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); | |
| }); | |
| } | |
| } | |
| template <typename T> | |
| static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, | |
| const int n_dims, const int nr, const int32_t * pos, const float freq_scale, | |
| const float freq_base, const float ext_factor, const float attn_factor, | |
| const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { | |
| GGML_ASSERT(ne0 % 2 == 0); | |
| const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); | |
| const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); | |
| const sycl::range<3> block_nums(1, num_blocks_x, nr); | |
| const float theta_scale = powf(freq_base, -2.0f / n_dims); | |
| dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); | |
| if (freq_factors == nullptr) { | |
| sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_neox<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, | |
| attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); | |
| }); | |
| } else { | |
| sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_neox<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, | |
| attn_factor, corr_dims, theta_scale, freq_factors, item_ct1); | |
| }); | |
| } | |
| } | |
| template <typename T> | |
| static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, | |
| const size_t s2, const int n_dims, const int nr, const int32_t * pos, | |
| const float freq_scale, const float freq_base, const float ext_factor, | |
| const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, | |
| const mrope_sections sections, queue_ptr stream) { | |
| GGML_ASSERT(ne0 % 2 == 0); | |
| const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); | |
| const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); | |
| const sycl::range<3> grid_dims(1, n_blocks_y, nr); | |
| const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); | |
| const float theta_scale = std::pow(freq_base, -2.0f / n_dims); | |
| // Add FP16 capability check if T could be sycl::half | |
| if constexpr (std::is_same_v<T, sycl::half>) { | |
| dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); | |
| } | |
| // launch kernel | |
| if (freq_factors == nullptr) { | |
| sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { | |
| rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, | |
| corr_dims, theta_scale, freq_factors, sections, item_ct1); | |
| }); | |
| } else { | |
| sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { | |
| rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, | |
| corr_dims, theta_scale, freq_factors, sections, item_ct1); | |
| }); | |
| } | |
| } | |
| // rope vision | |
| template <typename T> | |
| static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, | |
| const size_t s2, const int n_dims, const int nr, const int32_t * pos, | |
| const float freq_scale, const float freq_base, const float ext_factor, | |
| const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, | |
| const mrope_sections sections, queue_ptr stream) { | |
| GGML_ASSERT(ne0 % 2 == 0); | |
| const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); | |
| const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); | |
| const sycl::range<3> grid_dims(1, n_blocks_y, nr); | |
| const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); | |
| const float theta_scale = std::pow(freq_base, -2.0f / n_dims); | |
| // Add FP16 capability check if T could be sycl::half | |
| if constexpr (std::is_same_v<T, sycl::half>) { | |
| dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); | |
| } | |
| // launch kernel | |
| if (freq_factors == nullptr) { | |
| sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { | |
| rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, | |
| corr_dims, theta_scale, freq_factors, sections, item_ct1); | |
| }); | |
| } else { | |
| sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) { | |
| rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, | |
| corr_dims, theta_scale, freq_factors, sections, item_ct1); | |
| }); | |
| } | |
| } | |
| inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { | |
| GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); | |
| GGML_ASSERT(dst->src[0]->type == dst->type); | |
| const int64_t ne00 = dst->src[0]->ne[0]; // head dims | |
| const int64_t ne01 = dst->src[0]->ne[1]; // num heads | |
| const int64_t ne02 = dst->src[0]->ne[2]; // num heads | |
| const int64_t nr = ggml_nrows(dst->src[0]); | |
| const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type); | |
| const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type); | |
| //const int n_past = ((int32_t *) dst->op_params)[0]; | |
| const int n_dims = ((int32_t *) dst->op_params)[1]; | |
| const int mode = ((int32_t *) dst->op_params)[2]; | |
| //const int n_ctx = ((int32_t *) dst->op_params)[3]; | |
| const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; | |
| mrope_sections sections; | |
| // RoPE alteration for extended context | |
| float freq_base; | |
| float freq_scale; | |
| float ext_factor; | |
| float attn_factor; | |
| float beta_fast; | |
| float beta_slow; | |
| memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); | |
| memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); | |
| memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); | |
| memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); | |
| memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); | |
| memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); | |
| memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4); | |
| const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; | |
| const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; | |
| const bool is_vision = mode == GGML_ROPE_TYPE_VISION; | |
| if (is_mrope) { | |
| GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0); | |
| } | |
| if (is_vision) { | |
| GGML_ASSERT(n_dims == ne00/2); | |
| } | |
| const int32_t * pos = (const int32_t *) dst->src[1]->data; | |
| const float * freq_factors = nullptr; | |
| if (dst->src[2] != nullptr) { | |
| freq_factors = (const float *) dst->src[2]->data; | |
| } | |
| rope_corr_dims corr_dims; | |
| ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); | |
| dpct::queue_ptr main_stream = ctx.stream(); | |
| SYCL_CHECK(ggml_sycl_set_device(ctx.device)); | |
| // compute | |
| if (is_neox) { | |
| GGML_SYCL_DEBUG("%s: neox path\n", __func__); | |
| if (dst->src[0]->type == GGML_TYPE_F32) { | |
| rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr, | |
| pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream); | |
| } else if (dst->src[0]->type == GGML_TYPE_F16) { | |
| rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02, | |
| n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, | |
| main_stream); | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } else if (is_mrope && !is_vision) { | |
| GGML_SYCL_DEBUG("%s: mrope path\n", __func__); | |
| if (dst->src[0]->type == GGML_TYPE_F16) { | |
| rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, | |
| s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, | |
| freq_factors, sections, main_stream); | |
| } else if (dst->src[0]->type == GGML_TYPE_F32) { | |
| rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims, | |
| nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, | |
| main_stream); | |
| } else { | |
| GGML_ABORT("Fatal error: Tensor type unsupported!"); | |
| } | |
| } else if (is_vision) { | |
| GGML_SYCL_DEBUG("%s: vision path\n", __func__); | |
| if (dst->src[0]->type == GGML_TYPE_F16) { | |
| rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01, | |
| s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, | |
| freq_factors, sections, main_stream); | |
| } else if (dst->src[0]->type == GGML_TYPE_F32) { | |
| rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims, | |
| nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, | |
| main_stream); | |
| } else { | |
| GGML_ABORT("Fatal error: Tensor type unsupported!"); | |
| } | |
| } else { | |
| GGML_SYCL_DEBUG("%s: norm path\n", __func__); | |
| if (dst->src[0]->type == GGML_TYPE_F32) { | |
| rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr, | |
| pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream); | |
| } else if (dst->src[0]->type == GGML_TYPE_F16) { | |
| rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02, | |
| n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, | |
| main_stream); | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| } | |
| void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { | |
| scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3); | |
| ggml_sycl_op_rope(ctx, dst); | |
| } | |