Spaces:
Running
Running
File size: 22,059 Bytes
bf6ccee 5c44879 bf6ccee 5c44879 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee aaf2d96 a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee aaf2d96 a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee e4b1812 aaf2d96 e4b1812 5c44879 bf6ccee a29a2c3 bf6ccee e4b1812 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee 2e59a96 bf6ccee 2e59a96 bf6ccee a29a2c3 bf6ccee e4b1812 bf6ccee a29a2c3 bf6ccee a29a2c3 bf6ccee 2e59a96 bf6ccee 2e59a96 bf6ccee e4b1812 2e59a96 e4b1812 2e59a96 e4b1812 5c44879 e4b1812 5c44879 2e59a96 5c44879 2e59a96 5c44879 a29a2c3 bf6ccee 0a9c73a bf6ccee 0a9c73a 5c44879 0a9c73a bf6ccee 5c44879 bf6ccee 5c44879 bf6ccee 5c44879 bf6ccee 9d45f48 e4b1812 5c44879 bf6ccee e4b1812 0a9c73a bf6ccee 0a9c73a bf6ccee 0a9c73a bf6ccee 5c44879 0a9c73a a29a2c3 0a9c73a a29a2c3 bf6ccee 9808fbf bf6ccee e4b1812 5c44879 a29a2c3 5c44879 a29a2c3 5c44879 bf6ccee 5c44879 0a9c73a a29a2c3 0a9c73a a29a2c3 bf6ccee 9808fbf bf6ccee a29a2c3 4da3fb6 a29a2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
#include "rope.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml.h"
struct rope_corr_dims {
float v[2];
};
struct mrope_sections {
int v[4];
};
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
}
*cos_theta = sycl::cos(theta) * mscale;
*sin_theta = sycl::sin(theta) * mscale;
}
template <typename T, bool has_ff>
static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, float freq_scale, float ext_factor, float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
const sycl::nd_item<3> & item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
const int row0 = row % ne1;
const int channel0 = row / ne1;
const int i = row * ne0 + i0;
const int i2 = channel0 * s2 + row0 * s1 + i0;
if (i0 >= n_dims) {
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2);
return;
}
const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i2 + 0];
const float x1 = x[i2 + 1];
dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
dst[i + 1] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
const sycl::nd_item<3> & item_ct1) {
const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
const int row0 = row % ne1;
const int channel0 = row / ne1;
const int i = row * ne0 + i0 / 2;
const int i2 = channel0 * s2 + row0 * s1 + i0 / 2;
if (i0 >= n_dims) {
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2 + i0 / 2);
return;
}
const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i2 + 0];
const float x1 = x[i2 + n_dims / 2];
dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
if (i0 >= n_dims) {
*reinterpret_cast<sycl::vec<T, 2> *>(dst + idst + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i0 / 2 + ix);
return;
}
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
const int sect_dims = sections.v[0] + sections.v[1];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0f;
if (sector < sections.v[0]) {
const int p = sector;
theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
} else {
// Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
const int p = sector - sections.v[0];
theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T>
static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
/*
DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_norm<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
} else {
/*
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_norm<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
}
}
template <typename T>
static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
const int n_dims, const int nr, const int32_t * pos, const float freq_scale,
const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
if (freq_factors == nullptr) {
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
} else {
sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
});
}
}
template <typename T>
static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
// rope vision
template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(dst->src[0]->type == dst->type);
const int64_t ne00 = dst->src[0]->ne[0]; // head dims
const int64_t ne01 = dst->src[0]->ne[1]; // num heads
const int64_t ne02 = dst->src[0]->ne[2]; // num heads
const int64_t nr = ggml_nrows(dst->src[0]);
const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
mrope_sections sections;
// RoPE alteration for extended context
float freq_base;
float freq_scale;
float ext_factor;
float attn_factor;
float beta_fast;
float beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr;
if (dst->src[2] != nullptr) {
freq_factors = (const float *) dst->src[2]->data;
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
// compute
if (is_neox) {
GGML_SYCL_DEBUG("%s: neox path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
main_stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_mrope && !is_vision) {
GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else {
GGML_SYCL_DEBUG("%s: norm path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
main_stream);
} else {
GGML_ABORT("fatal error");
}
}
}
void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3);
ggml_sycl_op_rope(ctx, dst);
}
|