File size: 22,059 Bytes
bf6ccee
5c44879
 
bf6ccee
 
 
 
 
5c44879
 
 
 
bf6ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a29a2c3
 
 
 
 
 
bf6ccee
 
 
 
 
a29a2c3
bf6ccee
a29a2c3
 
 
 
 
bf6ccee
aaf2d96
 
 
 
 
a29a2c3
bf6ccee
a29a2c3
bf6ccee
 
 
 
a29a2c3
bf6ccee
a29a2c3
 
bf6ccee
a29a2c3
 
bf6ccee
 
a29a2c3
 
 
 
 
 
bf6ccee
 
 
 
 
a29a2c3
bf6ccee
a29a2c3
 
 
 
 
bf6ccee
aaf2d96
 
 
 
 
a29a2c3
bf6ccee
a29a2c3
bf6ccee
 
 
 
a29a2c3
bf6ccee
a29a2c3
 
bf6ccee
a29a2c3
 
bf6ccee
 
e4b1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf2d96
 
 
 
 
e4b1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c44879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6ccee
a29a2c3
 
 
 
bf6ccee
 
e4b1812
bf6ccee
 
a29a2c3
bf6ccee
a29a2c3
bf6ccee
 
 
 
 
 
 
2e59a96
 
 
 
 
bf6ccee
 
 
 
 
 
2e59a96
 
 
 
 
bf6ccee
 
 
 
a29a2c3
 
 
 
bf6ccee
 
e4b1812
bf6ccee
 
a29a2c3
bf6ccee
a29a2c3
bf6ccee
 
2e59a96
 
 
 
 
bf6ccee
2e59a96
 
 
 
 
bf6ccee
 
 
e4b1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e59a96
e4b1812
 
 
 
2e59a96
e4b1812
 
 
 
 
 
 
 
 
5c44879
 
 
 
 
 
 
 
 
e4b1812
5c44879
 
 
 
 
 
 
 
 
 
2e59a96
5c44879
 
 
 
2e59a96
5c44879
 
 
 
 
 
a29a2c3
bf6ccee
0a9c73a
bf6ccee
0a9c73a
5c44879
 
 
0a9c73a
bf6ccee
5c44879
 
 
 
bf6ccee
 
 
 
 
5c44879
bf6ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c44879
bf6ccee
9d45f48
e4b1812
5c44879
bf6ccee
e4b1812
 
 
 
 
 
 
 
0a9c73a
bf6ccee
 
0a9c73a
 
bf6ccee
 
 
 
 
0a9c73a
 
 
bf6ccee
 
5c44879
0a9c73a
a29a2c3
 
0a9c73a
a29a2c3
 
 
bf6ccee
9808fbf
bf6ccee
e4b1812
 
 
 
 
 
 
 
 
 
 
 
 
5c44879
 
 
a29a2c3
 
 
5c44879
a29a2c3
 
 
5c44879
 
 
bf6ccee
5c44879
0a9c73a
a29a2c3
 
0a9c73a
a29a2c3
 
 
bf6ccee
9808fbf
bf6ccee
 
 
a29a2c3
 
4da3fb6
a29a2c3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#include "rope.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml.h"

struct rope_corr_dims {
    float v[2];
};

struct mrope_sections {
    int v[4];
};

static float rope_yarn_ramp(const float low, const float high, const int i0) {
    const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
    return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
}

// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
    float * cos_theta, float * sin_theta) {
    // Get n-d rotational scaling corrected for extrapolation
    float theta_interp = freq_scale * theta_extrap;
    float theta = theta_interp;
    if (ext_factor != 0.0f) {
        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;

        // Get n-d magnitude scaling corrected for interpolation
        mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
    }
    *cos_theta = sycl::cos(theta) * mscale;
    *sin_theta = sycl::sin(theta) * mscale;
}

template <typename T, bool has_ff>
static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
                      const int32_t * pos, float freq_scale, float ext_factor, float attn_factor,
                      const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
                      const sycl::nd_item<3> & item_ct1) {
    const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));

    if (i0 >= ne0) {
        return;
    }

    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);

    const int row0     = row % ne1;
    const int channel0 = row / ne1;

    const int i  = row * ne0 + i0;
    const int i2 = channel0 * s2 + row0 * s1 + i0;

    if (i0 >= n_dims) {
        *reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2);
        return;
    }

    const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);

    const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;

    float cos_theta;
    float sin_theta;

    rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);

    const float x0 = x[i2 + 0];
    const float x1 = x[i2 + 1];

    dst[i + 0] = x0 * cos_theta - x1 * sin_theta;
    dst[i + 1] = x0 * sin_theta + x1 * cos_theta;
}

template <typename T, bool has_ff>
static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
                      const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
                      const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors,
                      const sycl::nd_item<3> & item_ct1) {
    const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + item_ct1.get_local_id(1));

    if (i0 >= ne0) {
        return;
    }

    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2);

    const int row0     = row % ne1;
    const int channel0 = row / ne1;

    const int i  = row * ne0 + i0 / 2;
    const int i2 = channel0 * s2 + row0 * s1 + i0 / 2;

    if (i0 >= n_dims) {
        *reinterpret_cast<sycl::vec<T, 2> *>(dst + i + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i2 + i0 / 2);
        return;
    }

    const float theta_base = pos[channel0] * sycl::pow(theta_scale, i0 / 2.0f);

    const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;

    float cos_theta;
    float sin_theta;

    rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);

    const float x0 = x[i2 + 0];
    const float x1 = x[i2 + n_dims / 2];

    dst[i + 0]          = x0 * cos_theta - x1 * sin_theta;
    dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}

template <typename T, bool has_ff>
static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
                        const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
                        const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
                        const float theta_scale, const float * freq_factors, const mrope_sections sections,
                        const sycl::nd_item<3> & item_ct1) {
    // get index pos
    const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
    if (i0 >= ne0) {
        return;
    }
    const int    row_dst   = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);

    const int    row_x     = row_dst % ne1;
    const int    channel_x = row_dst / ne1;
    const int    idst      = (row_dst * ne0) + (i0 / 2);
    const size_t ix        = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);

    if (i0 >= n_dims) {
        *reinterpret_cast<sycl::vec<T, 2> *>(dst + idst + i0 / 2) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i0 / 2 + ix);
        return;
    }

    const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
    const int sec_w = sections.v[1] + sections.v[0];
    const int sector = (i0 / 2) % sect_dims;


    float theta_base = 0.0;
    if (sector < sections.v[0]) {
        theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
    }
    else if (sector >= sections.v[0] && sector < sec_w) {
        theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
    }
    else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
        theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
    }
    else if (sector >= sec_w + sections.v[2]) {
        theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
    }

    const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
    float       cos_theta;
    float       sin_theta;
    rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
    const float x0 = x[ix + 0];
    const float x1 = x[ix + n_dims/2];

    // store results in dst
    dst[idst + 0]      = x0 * cos_theta - x1 * sin_theta;
    dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
}



template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
                        const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
                        const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
                        const float theta_scale, const float * freq_factors, const mrope_sections sections,
                        const sycl::nd_item<3> & item_ct1) {
    // get index pos
    const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
    if (i0 >= ne0) {
        return;
    }
    const int    row_dst   = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
    const int    row_x     = row_dst % ne1;
    const int    channel_x = row_dst / ne1;
    const int    idst      = (row_dst * ne0) + (i0 / 2);
    const size_t ix        = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);

    const int sect_dims = sections.v[0] + sections.v[1];
    const int sector    = (i0 / 2) % sect_dims;

    float theta_base = 0.0f;
    if (sector < sections.v[0]) {
        const int p = sector;
        theta_base  = pos[channel_x] * sycl::pow(theta_scale, (float) p);
    } else {
        // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
        const int p = sector - sections.v[0];
        theta_base  = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
    }

    const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
    float       cos_theta;
    float       sin_theta;
    rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
    const float x0 = x[ix + 0];
    const float x1 = x[ix + n_dims];

    // store results in dst
    dst[idst + 0]      = x0 * cos_theta - x1 * sin_theta;
    dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
}

template <typename T>
static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
                           const int n_dims, int nr, const int32_t * pos, const float freq_scale, const float freq_base,
                           const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
                           const float * freq_factors, queue_ptr stream) {
    GGML_ASSERT(ne0 % 2 == 0);
    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
    const int            num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
    const sycl::range<3> block_nums(1, num_blocks_x, nr);

    const float theta_scale = powf(freq_base, -2.0f / n_dims);

    dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });

    if (freq_factors == nullptr) {
        /*
        DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
                          [=](sycl::nd_item<3> item_ct1) {
                              rope_norm<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
                                                  attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
                          });
    } else {
        /*
        DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
                          [=](sycl::nd_item<3> item_ct1) {
                              rope_norm<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
                                                 attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
                          });
    }
}

template <typename T>
static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2,
                           const int n_dims, const int nr, const int32_t * pos, const float freq_scale,
                           const float freq_base, const float ext_factor, const float attn_factor,
                           const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
    GGML_ASSERT(ne0 % 2 == 0);
    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
    const int            num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
    const sycl::range<3> block_nums(1, num_blocks_x, nr);

    const float theta_scale = powf(freq_base, -2.0f / n_dims);

    dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });

    if (freq_factors == nullptr) {
        sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
                          [=](sycl::nd_item<3> item_ct1) {
                              rope_neox<T, false>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
                                                  attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
                          });
    } else {
        sycl_parallel_for(stream, sycl::nd_range<3>(block_nums * block_dims, block_dims),
                          [=](sycl::nd_item<3> item_ct1) {
                              rope_neox<T, true>(x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
                                                 attn_factor, corr_dims, theta_scale, freq_factors, item_ct1);
                          });
    }
}

template <typename T>
static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
                             const size_t s2, const int n_dims, const int nr, const int32_t * pos,
                             const float freq_scale, const float freq_base, const float ext_factor,
                             const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
                             const mrope_sections sections, queue_ptr stream) {
    GGML_ASSERT(ne0 % 2 == 0);
    const sycl::range<3>    block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
    const int               n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
    const sycl::range<3>    grid_dims(1, n_blocks_y, nr);
    const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);

    const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
    // Add FP16 capability check if T could be sycl::half
    if constexpr (std::is_same_v<T, sycl::half>) {
        dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
    }
    // launch kernel
    if (freq_factors == nullptr) {
        sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
            rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
                                  corr_dims, theta_scale, freq_factors, sections, item_ct1);
        });
    } else {
        sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
            rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
                                 corr_dims, theta_scale, freq_factors, sections, item_ct1);
        });
    }
}




// rope vision
template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
                             const size_t s2, const int n_dims, const int nr, const int32_t * pos,
                             const float freq_scale, const float freq_base, const float ext_factor,
                             const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
                             const mrope_sections sections, queue_ptr stream) {
    GGML_ASSERT(ne0 % 2 == 0);
    const sycl::range<3>    block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
    const int               n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
    const sycl::range<3>    grid_dims(1, n_blocks_y, nr);
    const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);

    const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
    // Add FP16 capability check if T could be sycl::half
    if constexpr (std::is_same_v<T, sycl::half>) {
        dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
    }
    // launch kernel
    if (freq_factors == nullptr) {
        sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
            rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
                                  corr_dims, theta_scale, freq_factors, sections, item_ct1);
        });
    } else {
        sycl_parallel_for(stream, nd_range, [=](sycl::nd_item<3> item_ct1) {
            rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
                                 corr_dims, theta_scale, freq_factors, sections, item_ct1);
        });
    }
}

inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {

    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
    GGML_ASSERT(dst->src[0]->type == dst->type);
    const int64_t ne00 = dst->src[0]->ne[0]; // head dims
    const int64_t ne01 = dst->src[0]->ne[1]; // num heads
    const int64_t ne02 = dst->src[0]->ne[2]; // num heads
    const int64_t nr = ggml_nrows(dst->src[0]);

    const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
    const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);


    //const int n_past      = ((int32_t *) dst->op_params)[0];
    const int n_dims      = ((int32_t *) dst->op_params)[1];
    const int mode        = ((int32_t *) dst->op_params)[2];
    //const int n_ctx       = ((int32_t *) dst->op_params)[3];
    const int n_ctx_orig  = ((int32_t *) dst->op_params)[4];
    mrope_sections sections;

    // RoPE alteration for extended context
    float freq_base;
    float freq_scale;
    float ext_factor;
    float attn_factor;
    float beta_fast;
    float beta_slow;

    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
    memcpy(&sections.v,  (int32_t *) dst->op_params + 11, sizeof(int)*4);

    const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
    const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
    const bool is_vision = mode == GGML_ROPE_TYPE_VISION;

    if (is_mrope) {
        GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
    }

    if (is_vision) {
        GGML_ASSERT(n_dims == ne00/2);
    }

    const int32_t * pos = (const int32_t *) dst->src[1]->data;

    const float * freq_factors = nullptr;
    if (dst->src[2] != nullptr) {
        freq_factors = (const float *) dst->src[2]->data;
    }

    rope_corr_dims corr_dims;
    ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);

    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));

    // compute
    if (is_neox) {
        GGML_SYCL_DEBUG("%s: neox path\n", __func__);
        if (dst->src[0]->type == GGML_TYPE_F32) {
            rope_neox_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
                           pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
        } else if (dst->src[0]->type == GGML_TYPE_F16) {
            rope_neox_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
                           n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
                           main_stream);
        } else {
            GGML_ABORT("fatal error");
        }
    } else if (is_mrope && !is_vision) {
        GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
        if (dst->src[0]->type == GGML_TYPE_F16) {
            rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
                s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
                freq_factors, sections, main_stream);
        } else if (dst->src[0]->type == GGML_TYPE_F32) {
            rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
                             nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
                             main_stream);
        } else {
            GGML_ABORT("Fatal error: Tensor type unsupported!");
        }
    } else if (is_vision) {
        GGML_SYCL_DEBUG("%s: vision path\n", __func__);
        if (dst->src[0]->type == GGML_TYPE_F16) {
            rope_vision_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, ne02, s01,
                             s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
                             freq_factors, sections, main_stream);
        } else if (dst->src[0]->type == GGML_TYPE_F32) {
            rope_vision_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
                             nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
                             main_stream);
        } else {
            GGML_ABORT("Fatal error: Tensor type unsupported!");
        }
    } else {
        GGML_SYCL_DEBUG("%s: norm path\n", __func__);
        if (dst->src[0]->type == GGML_TYPE_F32) {
            rope_norm_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, s01, s02, n_dims, nr,
                           pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, main_stream);
        } else if (dst->src[0]->type == GGML_TYPE_F16) {
            rope_norm_sycl((const sycl::half *) dst->src[0]->data, (sycl::half *) dst->data, ne00, ne01, s01, s02,
                           n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors,
                           main_stream);
        } else {
            GGML_ABORT("fatal error");
        }
    }
}

void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
    scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/3);
    ggml_sycl_op_rope(ctx, dst);
}