Akarshan Biswas commited on
Commit
5c44879
·
1 Parent(s): 2457b99

SYCL: Add ROPE vision kernel (llama/12887)

Browse files

* SYCL: Add ROPE vision kernel

* Add comment about rope mode

ggml/src/ggml-sycl/ggml-sycl.cpp CHANGED
@@ -4009,10 +4009,8 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
4009
  case GGML_OP_ROPE:
4010
  {
4011
  const int mode = ((const int32_t *) op->op_params)[2];
4012
- if (mode & GGML_ROPE_TYPE_MROPE) {
4013
- return false;
4014
- }
4015
- if (mode & GGML_ROPE_TYPE_VISION) {
4016
  return false;
4017
  }
4018
  return ggml_is_contiguous(op->src[0]);
 
4009
  case GGML_OP_ROPE:
4010
  {
4011
  const int mode = ((const int32_t *) op->op_params)[2];
4012
+ // mode is not used as a bitmask in practice, the various rope type modes are independent implementations
4013
+ if (mode == GGML_ROPE_TYPE_MROPE) {
 
 
4014
  return false;
4015
  }
4016
  return ggml_is_contiguous(op->src[0]);
ggml/src/ggml-sycl/rope.cpp CHANGED
@@ -1,9 +1,15 @@
1
  #include "rope.hpp"
 
 
2
 
3
  struct rope_corr_dims {
4
  float v[2];
5
  };
6
 
 
 
 
 
7
  static float rope_yarn_ramp(const float low, const float high, const int i0) {
8
  const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
9
  return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
@@ -114,6 +120,48 @@ static void rope_neox(
114
  dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
115
  }
116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  template <typename T>
118
  static void rope_norm_sycl(
119
  const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
@@ -192,21 +240,58 @@ static void rope_neox_sycl(
192
  }
193
  }
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
  void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
196
 
197
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
198
  GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
199
  GGML_ASSERT(dst->src[0]->type == dst->type);
200
-
201
- const int64_t ne00 = dst->src[0]->ne[0];
202
- const int64_t ne01 = dst->src[0]->ne[1];
203
  const int64_t nr = ggml_nrows(dst->src[0]);
204
 
 
 
 
 
205
  //const int n_past = ((int32_t *) dst->op_params)[0];
206
  const int n_dims = ((int32_t *) dst->op_params)[1];
207
  const int mode = ((int32_t *) dst->op_params)[2];
208
  //const int n_ctx = ((int32_t *) dst->op_params)[3];
209
  const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
 
210
 
211
  // RoPE alteration for extended context
212
  float freq_base;
@@ -222,8 +307,10 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
222
  memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
223
  memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
224
  memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
 
225
 
226
  const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
 
227
 
228
  const int32_t * pos = (const int32_t *) dst->src[1]->data;
229
 
@@ -240,6 +327,7 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
240
 
241
  // compute
242
  if (is_neox) {
 
243
  if (dst->src[0]->type == GGML_TYPE_F32) {
244
  rope_neox_sycl(
245
  (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
@@ -253,7 +341,19 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
253
  } else {
254
  GGML_ABORT("fatal error");
255
  }
 
 
 
 
 
 
 
 
 
 
 
256
  } else {
 
257
  if (dst->src[0]->type == GGML_TYPE_F32) {
258
  rope_norm_sycl(
259
  (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
 
1
  #include "rope.hpp"
2
+ #include "ggml-sycl/common.hpp"
3
+ #include "ggml.h"
4
 
5
  struct rope_corr_dims {
6
  float v[2];
7
  };
8
 
9
+ struct mrope_sections {
10
+ int v[4];
11
+ };
12
+
13
  static float rope_yarn_ramp(const float low, const float high, const int i0) {
14
  const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
15
  return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
 
120
  dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
121
  }
122
 
123
+ template <typename T, bool has_ff>
124
+ static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
125
+ const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
126
+ const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
127
+ const float theta_scale, const float * freq_factors, const mrope_sections sections,
128
+ const sycl::nd_item<3> & item_ct1) {
129
+ // get index pos
130
+ const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
131
+ if (i0 >= ne0) {
132
+ return;
133
+ }
134
+ const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
135
+ const int row_x = row_dst % ne1;
136
+ const int channel_x = row_dst / ne1;
137
+ const int idst = (row_dst * ne0) + (i0 / 2);
138
+ const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
139
+
140
+ const int sect_dims = sections.v[0] + sections.v[1];
141
+ const int sector = (i0 / 2) % sect_dims;
142
+
143
+ float theta_base = 0.0f;
144
+ if (sector < sections.v[0]) {
145
+ const int p = sector;
146
+ theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
147
+ } else {
148
+ // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
149
+ const int p = sector - sections.v[0];
150
+ theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
151
+ }
152
+
153
+ const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
154
+ float cos_theta;
155
+ float sin_theta;
156
+ rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
157
+ const float x0 = x[ix + 0];
158
+ const float x1 = x[ix + n_dims];
159
+
160
+ // store results in dst
161
+ dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
162
+ dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
163
+ }
164
+
165
  template <typename T>
166
  static void rope_norm_sycl(
167
  const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
 
240
  }
241
  }
242
 
243
+ // rope vision
244
+ template <typename T>
245
+ static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
246
+ const size_t s2, const int n_dims, const int nr, const int32_t * pos,
247
+ const float freq_scale, const float freq_base, const float ext_factor,
248
+ const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
249
+ const mrope_sections sections, queue_ptr stream) {
250
+ GGML_ASSERT(ne0 % 2 == 0);
251
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
252
+ const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
253
+ const sycl::range<3> grid_dims(1, n_blocks_y, nr);
254
+ const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
255
+
256
+ const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
257
+ // Add FP16 capability check if T could be sycl::half
258
+ if constexpr (std::is_same_v<T, sycl::half>) {
259
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
260
+ }
261
+ // launch kernel
262
+ if (freq_factors == nullptr) {
263
+ stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
264
+ rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
265
+ corr_dims, theta_scale, freq_factors, sections, item_ct1);
266
+ });
267
+ } else {
268
+ stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
269
+ rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
270
+ corr_dims, theta_scale, freq_factors, sections, item_ct1);
271
+ });
272
+ }
273
+ }
274
+
275
  void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
276
 
277
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
278
  GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
279
  GGML_ASSERT(dst->src[0]->type == dst->type);
280
+ const int64_t ne00 = dst->src[0]->ne[0]; // head dims
281
+ const int64_t ne01 = dst->src[0]->ne[1]; // num heads
282
+ const int64_t ne02 = dst->src[0]->ne[2]; // num heads
283
  const int64_t nr = ggml_nrows(dst->src[0]);
284
 
285
+ const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
286
+ const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);
287
+
288
+
289
  //const int n_past = ((int32_t *) dst->op_params)[0];
290
  const int n_dims = ((int32_t *) dst->op_params)[1];
291
  const int mode = ((int32_t *) dst->op_params)[2];
292
  //const int n_ctx = ((int32_t *) dst->op_params)[3];
293
  const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
294
+ mrope_sections sections;
295
 
296
  // RoPE alteration for extended context
297
  float freq_base;
 
307
  memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
308
  memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
309
  memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
310
+ memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
311
 
312
  const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
313
+ const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
314
 
315
  const int32_t * pos = (const int32_t *) dst->src[1]->data;
316
 
 
327
 
328
  // compute
329
  if (is_neox) {
330
+ GGML_SYCL_DEBUG("%s: neox path\n", __func__);
331
  if (dst->src[0]->type == GGML_TYPE_F32) {
332
  rope_neox_sycl(
333
  (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
 
341
  } else {
342
  GGML_ABORT("fatal error");
343
  }
344
+ } else if (is_vision) {
345
+ GGML_SYCL_DEBUG("%s: vision path\n", __func__);
346
+ if (dst->src[0]->type == GGML_TYPE_F16) {
347
+ rope_vision_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
348
+ freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
349
+ } else if (dst->src[0]->type == GGML_TYPE_F32) {
350
+ rope_vision_sycl((const float *) dst->src[0]->data, (float *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
351
+ freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
352
+ } else {
353
+ GGML_ABORT("Fatal error: Tensor type unsupported!");
354
+ }
355
  } else {
356
+ GGML_SYCL_DEBUG("%s: norm path\n", __func__);
357
  if (dst->src[0]->type == GGML_TYPE_F32) {
358
  rope_norm_sycl(
359
  (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,