File size: 31,775 Bytes
cbbfa9e
 
 
bf225d6
cbbfa9e
 
afa1447
cbbfa9e
 
3dc93f3
cbbfa9e
 
 
 
 
a35db11
 
 
 
cbbfa9e
 
 
 
 
 
39c4fa5
cbbfa9e
08fc76d
cbbfa9e
3dc93f3
ec2f307
a35db11
ec2f307
cbbfa9e
ec2f307
3dc93f3
cbbfa9e
 
 
 
 
4cf786d
 
cbbfa9e
5e508d2
 
 
 
 
 
 
 
 
 
 
a73f01f
04b01d8
 
 
5422b31
04b01d8
 
bf49bbe
a73f01f
04b01d8
 
 
a73f01f
bf49bbe
a027c1d
4850c24
 
 
a73f01f
 
5422b31
 
 
4850c24
5e508d2
e35329b
 
 
5e508d2
 
 
5fb7320
5e508d2
cbbfa9e
c768824
 
 
 
b88e163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbbfa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35db11
cbbfa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf95d3
cbbfa9e
 
 
 
 
 
 
 
e37eff3
891b1d1
 
 
 
 
 
 
 
 
8e1f56c
891b1d1
 
 
 
e37eff3
8e1f56c
04f123a
cbbfa9e
 
 
04f123a
cbbfa9e
 
 
 
 
 
 
ec2f307
ca79691
2cc4df4
 
 
 
e37eff3
78a5b67
e37eff3
ca79691
5931562
 
 
 
e35329b
78a5b67
e35329b
78a5b67
f95736f
a027c1d
f95736f
a027c1d
149f5a5
5422b31
149f5a5
5422b31
e37eff3
1d24833
e37eff3
ca79691
1d24833
 
 
 
e37eff3
5b9980d
e37eff3
5b9980d
e35329b
8ec75c3
e35329b
8ec75c3
b88e163
 
 
 
 
5e508d2
b88e163
 
 
 
e35329b
 
03d4b22
 
b88e163
 
e37eff3
a027c1d
 
b6dc6a1
e35329b
 
b6dc6a1
 
 
 
 
 
 
 
 
 
e37eff3
b88e163
 
 
 
efa6dac
e35329b
 
ca79691
 
2d1e6e7
1a9d2d3
 
 
 
 
2d1e6e7
 
5422b31
f9dbd96
149f5a5
f9dbd96
 
 
5422b31
 
f328957
1d24833
5e508d2
78a5b67
 
1d24833
4168dda
1d24833
 
5b9980d
4168dda
5b9980d
 
ed08269
e37eff3
c3467c7
ed08269
 
e37eff3
ed08269
 
cbbfa9e
 
 
 
e37eff3
cbbfa9e
 
 
 
 
 
e37eff3
cbbfa9e
 
 
12bb60d
 
 
 
cbbfa9e
 
 
 
 
9808fbf
cbbfa9e
 
507d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1c1a4
52069b8
e37eff3
52069b8
 
 
bc1c1a4
 
52069b8
 
e37eff3
52069b8
 
bc1c1a4
cbbfa9e
 
bc1c1a4
 
cbbfa9e
 
 
 
bc1c1a4
cbbfa9e
 
bc1c1a4
 
 
cbbfa9e
 
 
 
bc1c1a4
cbbfa9e
78a5b67
ca79691
bc1c1a4
 
ca79691
 
 
 
 
 
 
cbbfa9e
 
0c60f80
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1c1a4
cbbfa9e
 
bc1c1a4
 
cbbfa9e
 
 
 
4cf786d
78a5b67
4cf786d
e37eff3
ca79691
4cf786d
ca79691
e37eff3
4cf786d
 
ca79691
 
 
 
4cf786d
ca79691
4cf786d
58a3802
bc1c1a4
58a3802
4cf786d
58a3802
4cf786d
ca79691
 
4cf786d
bc1c1a4
4cf786d
 
bc1c1a4
34d3b03
58a3802
34d3b03
bc1c1a4
 
34d3b03
 
 
 
 
58a3802
34d3b03
cbbfa9e
4cf786d
34d3b03
 
 
 
 
a35db11
cbbfa9e
afa1447
e37eff3
1f75790
afa1447
a73f01f
afa1447
1f75790
afa1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37eff3
afa1447
ab96dac
afa1447
ab96dac
afa1447
 
 
ab96dac
afa1447
e37eff3
afa1447
 
bf225d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf7097
cbbfa9e
65ab3e8
 
 
 
 
 
 
 
 
 
 
cbbfa9e
849ff52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf225d6
 
 
 
 
 
 
849ff52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbbfa9e
 
 
 
 
 
 
34d3b03
cbbfa9e
5931562
a75e157
cbbfa9e
 
 
e538e2c
cbbfa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08fc76d
a687ec3
08fc76d
 
 
 
 
 
 
 
 
6b63eb1
08fc76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2fdbe6
 
 
 
 
 
 
08fc76d
 
 
cbbfa9e
 
 
 
 
 
 
 
08fc76d
 
cbbfa9e
 
 
 
 
39c4fa5
cbbfa9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
#pragma once

#include "ggml.h"
#include "ggml-impl.h"
#include "ggml-cuda.h"

#include <cstdint>
#include <memory>

#if defined(GGML_USE_HIP)
#define GGML_COMMON_DECL_HIP
#define GGML_COMMON_IMPL_HIP
#else
#define GGML_COMMON_DECL_CUDA
#define GGML_COMMON_IMPL_CUDA
#if defined(GGML_USE_MUSA)
#define GGML_COMMON_DECL_MUSA
#define GGML_COMMON_IMPL_MUSA
#endif
#endif
#include "ggml-common.h"

#include <array>
#include <cassert>
#include <cfloat>
#include <cstdio>
#include <string>
#include <vector>

#if defined(GGML_USE_HIP)
#include "vendors/hip.h"
#elif defined(GGML_USE_MUSA)
#include "vendors/musa.h"
#else
#include "vendors/cuda.h"
#endif // defined(GGML_USE_HIP)

#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)

#define WARP_SIZE 32
#define CUDART_HMAX   11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CUDART_HMASK  12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons

#define GGML_CUDA_CC_PASCAL          600
#define GGML_CUDA_CC_DP4A            610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define GGML_CUDA_CC_VOLTA           700
#define GGML_CUDA_CC_TURING          750
#define GGML_CUDA_CC_AMPERE          800
#define GGML_CUDA_CC_ADA_LOVELACE    890
#define GGML_CUDA_CC_OFFSET_AMD      0x1000000
#define GGML_CUDA_CC_OFFSET_MTHREADS 0x0100000
#define GGML_CUDA_CC_IS_NVIDIA(cc)   (cc < GGML_CUDA_CC_OFFSET_MTHREADS)

// AMD
// GCN/CDNA, wave size is 64
#define GGML_CUDA_CC_GCN4       (GGML_CUDA_CC_OFFSET_AMD + 0x803)  // Tonga, Fiji, Polaris, minimum for fast fp16
#define GGML_CUDA_CC_VEGA       (GGML_CUDA_CC_OFFSET_AMD + 0x900)  // Vega56/64, minimum for fp16 dual issue
#define GGML_CUDA_CC_VEGA20     (GGML_CUDA_CC_OFFSET_AMD + 0x906)  // MI50/Radeon VII, minimum for dp4a
#define GGML_CUDA_CC_CDNA1      (GGML_CUDA_CC_OFFSET_AMD + 0x908)  // MI100, minimum for MFMA, acc registers
#define GGML_CUDA_CC_CDNA2      (GGML_CUDA_CC_OFFSET_AMD + 0x910)  // MI210, minimum acc register renameing
#define GGML_CUDA_CC_CDNA3      (GGML_CUDA_CC_OFFSET_AMD + 0x942)  // MI300

// RDNA removes MFMA, dp4a, xnack, acc registers, wave size is 32
#define GGML_CUDA_CC_RDNA1      (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2      (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3      (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA4      (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000

#define GGML_CUDA_CC_IS_AMD(cc)   (cc >= GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_RDNA(cc)  (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc)   (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA1)
#define GGML_CUDA_CC_IS_CDNA(cc)  (cc >= GGML_CUDA_CC_CDNA1 && cc < GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_CDNA3(cc) (cc >= GGML_CUDA_CC_CDNA3 && cc < GGML_CUDA_CC_RDNA1)

// Moore Threads
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG  (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD

#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_QY1(cc)      (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
#define GGML_CUDA_CC_IS_QY2(cc)      (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_NG(cc)       (cc >= GGML_CUDA_CC_NG)

#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
#    define GGML_CUDA_USE_CUB
#endif  // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070

#ifdef __CUDA_ARCH_LIST__
constexpr bool ggml_cuda_has_arch_impl(int) {
    return false;
}

template<class ... Archs>
constexpr bool ggml_cuda_has_arch_impl(const int arch, const int first, Archs... rest) {
    return arch == first || ggml_cuda_has_arch_impl(arch, rest...);
}

constexpr bool ggml_cuda_has_arch(const int arch) {
    return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__);
}

constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) {
    if (cur == 0) {
        GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch);
    }
    return cur;
}

template<class ... Archs>
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur, const int first, Archs... rest) {
    if (first <= arch && first > cur) {
        return ggml_cuda_highest_compiled_arch_impl(arch, first, rest...);
    } else {
        return ggml_cuda_highest_compiled_arch_impl(arch, cur, rest...);
    }
}

constexpr int ggml_cuda_highest_compiled_arch(const int arch) {
    return ggml_cuda_highest_compiled_arch_impl(arch, 0, __CUDA_ARCH_LIST__);
}
#else
static int ggml_cuda_highest_compiled_arch(const int arch) {
    return arch;
}
#endif // __CUDA_ARCH_LIST__

// ---------------------------------------------------------------------------------------------------------

#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses

#define GGML_CUDA_MAX_STREAMS 8

[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);

#define CUDA_CHECK_GEN(err, success, error_fn)                                      \
     do {                                                                           \
        auto err_ = (err);                                                          \
        if (err_ != (success)) {                                                    \
            ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_));    \
        }                                                                           \
    } while (0)

#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)

#if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA)
    static const char * cublas_get_error_str(const cublasStatus_t err) {
        return cublasGetStatusString(err);
    }
#else
    static const char * cublas_get_error_str(const cublasStatus_t err) {
        switch (err) {
            case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
            case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
            case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
            case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
            case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
            case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
            case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
            case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
            case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
            default: return "unknown error";
        }
    }
#endif // CUDART_VERSION >= 12000

#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)

#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
static const char * cu_get_error_str(CUresult err) {
    const char * err_str;
    cuGetErrorString(err, &err_str);
    return err_str;
}
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif

#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#    define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes)                                                       \
        do {                                                                                                   \
            static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = { false };                         \
            const int   id                                                = ggml_cuda_get_device();            \
            if (!shared_memory_limit_raised[id]) {                                                             \
                CUDA_CHECK(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes)); \
                shared_memory_limit_raised[id] = true;                                                         \
            }                                                                                                  \
        } while (0)
#else
#    define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
        do {                                             \
            GGML_UNUSED(nbytes);                         \
        } while (0)
#endif // !(defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)

#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
#else
#define GGML_CUDA_ASSUME(x)
#endif // CUDART_VERSION >= 11010

#ifdef GGML_CUDA_F16
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16

#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))

#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL

#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610

#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#define FP16_MMA_AVAILABLE
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)

#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))

#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)

#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define TURING_MMA_AVAILABLE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING

#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#define AMPERE_MMA_AVAILABLE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE

#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#define CP_ASYNC_AVAILABLE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE

#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
#define FLASH_ATTN_AVAILABLE
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)

static bool fp16_available(const int cc) {
    return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
}

static bool fast_fp16_available(const int cc) {
    return (GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && cc != 610) || GGML_CUDA_CC_IS_AMD(cc);
}

// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fast_fp16_hardware_available(const int cc) {
    return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_PASCAL && cc != 610) || GGML_CUDA_CC_IS_AMD(cc) ||
        (GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
}

// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
    return false;
#else
    if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
        GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) ||
        GGML_CUDA_CC_IS_MTHREADS(cc)) {
        return true;
    } else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
#if defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
        return true;
#else
        return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
    } else {
        return false;
    }
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}

// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
    return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||
        GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc) ||
        (GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
}

static bool bf16_mma_hardware_available(const int cc) {
    return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) || GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
}

static bool fp32_mma_hardware_available(const int cc) {
    return GGML_CUDA_CC_IS_CDNA(cc);
}

static bool amd_mfma_available(const int cc) {
#if !defined(GGML_HIP_NO_MMQ_MFMA)
    return GGML_CUDA_CC_IS_CDNA(cc);
#else
    return false;
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
}

// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
static bool turing_mma_available(const int cc) {
    return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
}

static bool ampere_mma_available(const int cc) {
    return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
}

static bool cp_async_available(const int cc) {
    return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
}

static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
#if defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
    return 64;
#else
    return 32;
#endif // defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
}

[[noreturn]]
static __device__ void no_device_code(
    const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {

#if defined(GGML_USE_HIP)
    printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
           file_name, line, function_name, arch);
    GGML_UNUSED(arch_list);
#else
    printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
           file_name, line, function_name, arch, arch_list);
#endif // defined(GGML_USE_HIP)
    __trap();

    GGML_UNUSED(no_device_code); // suppress unused function warning

#if defined(GGML_USE_MUSA)
    __builtin_unreachable();
#endif // defined(GGML_USE_MUSA)
}

#ifdef __CUDA_ARCH__
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
#else
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__

// The compiler is always able to unroll loops if they contain continue expressions.
// In such cases loop unrolling can still be achieved via recursion:
template <int n>
struct ggml_cuda_unroll {
    template <typename Func, typename... Args>
    __device__ void operator()(const Func & f, Args... args) const {
        f(n - 1, args...);
        ggml_cuda_unroll<n - 1>{}(f, args...);
    }
};

template <>
struct ggml_cuda_unroll<1> {
    template <typename Func, typename... Args>
    __device__ void operator()(const Func & f, Args... args) const {
        f(0, args...);
    }
};

template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
    return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
    for (int offset = width/2; offset > 0; offset >>= 1) {
        x += __shfl_xor_sync(0xffffffff, x, offset, width);
    }
    return x;
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
}

template<int width = WARP_SIZE>
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
    for (int offset = width/2; offset > 0; offset >>= 1) {
        x += __shfl_xor_sync(0xffffffff, x, offset, width);
    }
    return x;
}

template<int width = WARP_SIZE>
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
    for (int offset = width/2; offset > 0; offset >>= 1) {
        a.x += __shfl_xor_sync(0xffffffff, a.x, offset, width);
        a.y += __shfl_xor_sync(0xffffffff, a.y, offset, width);
    }
    return a;
}

template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#ifdef FP16_AVAILABLE
#pragma unroll
    for (int offset = width/2; offset > 0; offset >>= 1) {
        a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, width));
    }
    return a;

#else
    NO_DEVICE_CODE;
    return a;
#endif // FP16_AVAILABLE
}

template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_all(int x) {
#ifdef GGML_USE_HIP
#pragma unroll
    for (int offset = width/2; offset > 0; offset >>= 1) {
        x = x && __shfl_xor_sync(0xffffffff, x, offset, width);
    }
    return x;
#else
    static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented");
    return __all_sync(0xffffffff, x);
#endif // GGML_USE_HIP
}

template<int width = WARP_SIZE>
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
    for (int offset = width/2; offset > 0; offset >>= 1) {
        x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, width));
    }
    return x;
}

static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE

#if !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
    return __float2half(fmaxf(__half2float(a), __half2float(b)));
#else
    return __hmax(a, b);
#endif // !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX

#else
   NO_DEVICE_CODE;
   GGML_UNUSED(b);
   return a;
#endif // FP16_AVAILABLE
}

static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
#if defined(GGML_USE_HIP)
    return half2(__hmax(a.x, b.x), __hmax(a.y, b.y));
#elif CUDART_VERSION >= CUDART_HMAX
    return __hmax2(a, b);
#else
    half2 ret;
    reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a),  __low2float(b)));
    reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
    return ret;
#endif
}

template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
#pragma unroll
   for (int offset = width/2; offset > 0; offset >>= 1) {
       x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
   }
   return x;
#else
   GGML_UNUSED(x);
   NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
}

#if CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
    const uint32_t mask_low  = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
    const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
    return mask_low | mask_high;
}
#endif // CUDART_VERSION < CUDART_HMASK

static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIP)
#if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
    c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3) || defined(RDNA4)
    c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(RDNA1) || defined(__gfx900__)
    int tmp1;
    int tmp2;
    asm("\n \
        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
        v_add3_u32 %0, %1, %2, %0 \n \
        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
        v_add3_u32 %0, %1, %2, %0 \n \
        "
        : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
        : "v"(a), "v"(b)
    );
#else
    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
    c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
#endif
    return c;

#else // defined(GGML_USE_HIP)

#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
    return __dp4a(a, b, c);
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
    const int8_t * a8 = (const int8_t *) &a;
    const int8_t * b8 = (const int8_t *) &b;
    return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)

#endif // defined(GGML_USE_HIP)
}

static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
#if CUDART_VERSION >= 12080
    const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
    return (float) e;
#else
    uint32_t bits;
    if (x == 0) {
        bits = 0x00400000;
    } else {
        bits = (uint32_t) x << 23;
    }

    float result;
    memcpy(&result, &bits, sizeof(float));
    return result;
#endif // CUDART_VERSION >= 12050
}

typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);

static __device__ __forceinline__ float get_alibi_slope(
    const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
) {
    if (max_bias <= 0.0f) {
        return 1.0f;
    }
    const float base = h < n_head_log2 ? m0 : m1;
    const int   exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;

    return powf(base, exph);
}

template <ggml_type type>
struct ggml_cuda_type_traits;

template<>
struct ggml_cuda_type_traits<GGML_TYPE_F16> {
    static constexpr int qk = 1;
    static constexpr int qr = 1;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
    static constexpr int qk = QK4_0;
    static constexpr int qr = QR4_0;
    static constexpr int qi = QI4_0;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
    static constexpr int qk = QK4_1;
    static constexpr int qr = QR4_1;
    static constexpr int qi = QI4_1;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
    static constexpr int qk = QK5_0;
    static constexpr int qr = QR5_0;
    static constexpr int qi = QI5_0;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
    static constexpr int qk = QK5_1;
    static constexpr int qr = QR5_1;
    static constexpr int qi = QI5_1;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
    static constexpr int qk = QK8_0;
    static constexpr int qr = QR8_0;
    static constexpr int qi = QI8_0;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_MXFP4> {
    static constexpr int qk = QK_MXFP4;
    static constexpr int qr = QR_MXFP4;
    static constexpr int qi = QI_MXFP4;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_K;
    static constexpr int qi = QI2_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR3_K;
    static constexpr int qi = QI3_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR4_K;
    static constexpr int qi = QI4_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR5_K;
    static constexpr int qi = QI5_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR6_K;
    static constexpr int qi = QI6_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_XXS;
    static constexpr int qi = QI2_XXS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_XS;
    static constexpr int qi = QI2_XS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_S;
    static constexpr int qi = QI2_S;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR3_XXS;
    static constexpr int qi = QI3_XXS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR1_S;
    static constexpr int qi = QI1_S;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR1_M;
    static constexpr int qi = QI1_M;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
    static constexpr int qk = QK4_NL;
    static constexpr int qr = QR4_NL;
    static constexpr int qi = QI4_NL;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR4_XS;
    static constexpr int qi = QI4_XS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR3_S;
    static constexpr int qi = QI3_S;
};

//////////////////////

struct ggml_cuda_device_info {
    int device_count;

    struct cuda_device_info {
        int     cc;                 // compute capability
        int     nsm;                // number of streaming multiprocessors
        size_t  smpb;               // max. shared memory per block
        size_t  smpbo;              // max. shared memory per block (with opt-in)
        bool    integrated;         // Device is integrated as opposed to discrete
        bool    vmm;                // virtual memory support
        size_t  vmm_granularity;    // granularity of virtual memory
        size_t  total_vram;
        int     warp_size;          // Number of threads in a dispatch
    };

    cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};

    std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
};

const ggml_cuda_device_info & ggml_cuda_info();

void ggml_cuda_set_device(int device);
int ggml_cuda_get_device();

struct ggml_cuda_pool {
    virtual ~ggml_cuda_pool() = default;

    virtual void * alloc(size_t size, size_t * actual_size) = 0;
    virtual void free(void * ptr, size_t size) = 0;
};

template<typename T>
struct ggml_cuda_pool_alloc {
    ggml_cuda_pool * pool = nullptr;
    T * ptr = nullptr;
    size_t actual_size = 0;

    ggml_cuda_pool_alloc() = default;

    explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
    }

    ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
        alloc(size);
    }

    ~ggml_cuda_pool_alloc() {
        if (ptr != nullptr) {
            pool->free(ptr, actual_size);
        }
    }

    // size is in number of elements
    T * alloc(size_t size) {
        GGML_ASSERT(pool != nullptr);
        GGML_ASSERT(ptr == nullptr);
        ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
        return ptr;
    }

    T * alloc(ggml_cuda_pool & pool, size_t size) {
        this->pool = &pool;
        return alloc(size);
    }

    T * get() {
        return ptr;
    }

    ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
    ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
    ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
    ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
};


// backend interface

struct ggml_tensor_extra_gpu {
    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
    cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
};


#if (defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)) || defined(GGML_MUSA_GRAPHS)
#define USE_CUDA_GRAPH
#endif

struct ggml_graph_node_properties {
    void * node_address;
    ggml_op node_op;
    int64_t ne[GGML_MAX_DIMS];
    size_t nb[GGML_MAX_DIMS];
    void * src_address[GGML_MAX_SRC];
    int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
};

struct ggml_cuda_graph {
#ifdef USE_CUDA_GRAPH
    ~ggml_cuda_graph() {
        if (instance != nullptr) {
            CUDA_CHECK(cudaGraphExecDestroy(instance));
        }
        if (graph != nullptr) {
            CUDA_CHECK(cudaGraphDestroy(graph));
        }
    }
    cudaGraph_t graph = nullptr;
    cudaGraphExec_t instance = nullptr;
    size_t num_nodes = 0;
    std::vector<cudaGraphNode_t> nodes;
    std::vector<cudaKernelNodeParams> params;
    bool disable_due_to_gpu_arch = false;
    bool disable_due_to_too_many_updates = false;
    bool disable_due_to_failed_graph_capture = false;
    int number_consecutive_updates = 0;
    std::vector<ggml_graph_node_properties> ggml_graph_properties;
    bool use_cpy_indirection = false;
    std::vector<char *> cpy_dest_ptrs;
    char ** dest_ptrs_d;
    int dest_ptrs_size = 0;
    // Index to allow each cpy kernel to be aware of it's position within the graph
    // relative to other cpy nodes.
    int graph_cpynode_index = -1;
#endif
};

struct ggml_backend_cuda_context {
    int device;
    std::string name;
    cudaEvent_t copy_event = nullptr;

    cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
    cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};

    std::unique_ptr<ggml_cuda_graph> cuda_graph;

    explicit ggml_backend_cuda_context(int device) :
        device(device),
        name(GGML_CUDA_NAME + std::to_string(device)) {
    }

    ~ggml_backend_cuda_context();

    cudaStream_t stream(int device, int stream) {
        if (streams[device][stream] == nullptr) {
            ggml_cuda_set_device(device);
            CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
        }
        return streams[device][stream];
    }

    cudaStream_t stream() {
        return stream(device, 0);
    }

    cublasHandle_t cublas_handle(int device) {
        if (cublas_handles[device] == nullptr) {
            ggml_cuda_set_device(device);
            CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
            CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
        }
        return cublas_handles[device];
    }

    cublasHandle_t cublas_handle() {
        return cublas_handle(device);
    }

    // pool
    std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];

    static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);

    ggml_cuda_pool & pool(int device) {
        if (pools[device] == nullptr) {
            pools[device] = new_pool_for_device(device);
        }
        return *pools[device];
    }

    ggml_cuda_pool & pool() {
        return pool(device);
    }
};