Spaces:
Sleeping
Sleeping
Commit
·
849ff52
1
Parent(s):
ded0c68
CUDA: refactor mmq, dmmv, mmvq (llama/7716)
Browse files* CUDA: refactor mmq, dmmv, mmvq
* fix out-of-bounds write
* struct for qk, qr, qi
* fix cmake build
* mmq_type_traits
This view is limited to 50 files because it contains too many changes.
See raw diff
- ggml-common.h +6 -0
- ggml-cuda.cu +9 -75
- ggml-cuda/common.cuh +156 -1
- ggml-cuda/dmmv.cu +21 -9
- ggml-cuda/mmq.cu +14 -1491
- ggml-cuda/mmq.cuh +1300 -0
- ggml-cuda/mmvq.cu +76 -61
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +1 -1
- ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +1 -1
ggml-common.h
CHANGED
|
@@ -123,12 +123,18 @@ typedef sycl::half2 ggml_half2;
|
|
| 123 |
#define QI1_S (QK_K / (4*QR1_S))
|
| 124 |
#define QR1_S 8
|
| 125 |
|
|
|
|
|
|
|
|
|
|
| 126 |
#define QI4_NL (QK4_NL / (4*QR4_NL))
|
| 127 |
#define QR4_NL 2
|
| 128 |
|
| 129 |
#define QI4_XS (QK_K / (4*QR4_XS))
|
| 130 |
#define QR4_XS 8
|
| 131 |
|
|
|
|
|
|
|
|
|
|
| 132 |
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
|
| 133 |
|
| 134 |
#define QK4_0 32
|
|
|
|
| 123 |
#define QI1_S (QK_K / (4*QR1_S))
|
| 124 |
#define QR1_S 8
|
| 125 |
|
| 126 |
+
#define QI1_M (QK_K / (4*QR1_M))
|
| 127 |
+
#define QR1_M 8
|
| 128 |
+
|
| 129 |
#define QI4_NL (QK4_NL / (4*QR4_NL))
|
| 130 |
#define QR4_NL 2
|
| 131 |
|
| 132 |
#define QI4_XS (QK_K / (4*QR4_XS))
|
| 133 |
#define QR4_XS 8
|
| 134 |
|
| 135 |
+
#define QI3_S (QK_K / (4*QR3_S))
|
| 136 |
+
#define QR3_S 8
|
| 137 |
+
|
| 138 |
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
|
| 139 |
|
| 140 |
#define QK4_0 32
|
ggml-cuda.cu
CHANGED
|
@@ -633,88 +633,22 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
|
| 633 |
|
| 634 |
// cuda split buffer
|
| 635 |
|
| 636 |
-
static int64_t get_row_rounding(
|
| 637 |
-
int64_t
|
| 638 |
-
int64_t max_compute_capability = INT_MIN;
|
| 639 |
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
| 640 |
-
if (tensor_split[id]
|
| 641 |
-
|
| 642 |
-
min_compute_capability = ggml_cuda_info().devices[id].cc;
|
| 643 |
-
}
|
| 644 |
-
if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
|
| 645 |
-
max_compute_capability = ggml_cuda_info().devices[id].cc;
|
| 646 |
-
}
|
| 647 |
}
|
| 648 |
-
}
|
| 649 |
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
case GGML_TYPE_Q4_0:
|
| 653 |
-
case GGML_TYPE_Q4_1:
|
| 654 |
-
case GGML_TYPE_Q5_0:
|
| 655 |
-
case GGML_TYPE_Q5_1:
|
| 656 |
-
case GGML_TYPE_Q8_0:
|
| 657 |
-
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
| 658 |
-
case GGML_TYPE_F16:
|
| 659 |
-
case GGML_TYPE_F32:
|
| 660 |
-
return 1;
|
| 661 |
-
case GGML_TYPE_Q2_K:
|
| 662 |
-
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
|
| 663 |
-
case GGML_TYPE_Q3_K:
|
| 664 |
-
return min_compute_capability < CC_RDNA2 ? 128 : 64;
|
| 665 |
-
case GGML_TYPE_Q4_K:
|
| 666 |
-
case GGML_TYPE_Q5_K:
|
| 667 |
-
case GGML_TYPE_Q6_K:
|
| 668 |
-
case GGML_TYPE_IQ2_XXS:
|
| 669 |
-
case GGML_TYPE_IQ2_XS:
|
| 670 |
-
case GGML_TYPE_IQ2_S:
|
| 671 |
-
case GGML_TYPE_IQ3_XXS:
|
| 672 |
-
case GGML_TYPE_IQ1_S:
|
| 673 |
-
case GGML_TYPE_IQ1_M:
|
| 674 |
-
case GGML_TYPE_IQ4_NL:
|
| 675 |
-
case GGML_TYPE_IQ4_XS:
|
| 676 |
-
case GGML_TYPE_IQ3_S:
|
| 677 |
-
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
| 678 |
-
default:
|
| 679 |
-
GGML_ASSERT(false);
|
| 680 |
-
}
|
| 681 |
-
#else
|
| 682 |
-
switch(type) {
|
| 683 |
-
case GGML_TYPE_Q4_0:
|
| 684 |
-
case GGML_TYPE_Q4_1:
|
| 685 |
-
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
| 686 |
-
case GGML_TYPE_Q5_0:
|
| 687 |
-
case GGML_TYPE_Q5_1:
|
| 688 |
-
case GGML_TYPE_Q8_0:
|
| 689 |
-
return 64;
|
| 690 |
-
case GGML_TYPE_F16:
|
| 691 |
-
case GGML_TYPE_F32:
|
| 692 |
-
return 1;
|
| 693 |
-
case GGML_TYPE_Q2_K:
|
| 694 |
-
case GGML_TYPE_Q3_K:
|
| 695 |
-
case GGML_TYPE_Q4_K:
|
| 696 |
-
case GGML_TYPE_Q5_K:
|
| 697 |
-
case GGML_TYPE_IQ2_XXS:
|
| 698 |
-
case GGML_TYPE_IQ2_XS:
|
| 699 |
-
case GGML_TYPE_IQ2_S:
|
| 700 |
-
case GGML_TYPE_IQ3_XXS:
|
| 701 |
-
case GGML_TYPE_IQ1_S:
|
| 702 |
-
case GGML_TYPE_IQ1_M:
|
| 703 |
-
case GGML_TYPE_IQ4_NL:
|
| 704 |
-
case GGML_TYPE_IQ4_XS:
|
| 705 |
-
case GGML_TYPE_IQ3_S:
|
| 706 |
-
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
| 707 |
-
case GGML_TYPE_Q6_K:
|
| 708 |
-
return 64;
|
| 709 |
-
default:
|
| 710 |
-
GGML_ASSERT(false);
|
| 711 |
}
|
| 712 |
-
|
| 713 |
}
|
| 714 |
|
| 715 |
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
|
| 716 |
const int64_t nrows = ggml_nrows(tensor);
|
| 717 |
-
const int64_t rounding = get_row_rounding(
|
| 718 |
|
| 719 |
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
|
| 720 |
*row_low -= *row_low % rounding;
|
|
@@ -1499,7 +1433,7 @@ static void ggml_cuda_op_mul_mat(
|
|
| 1499 |
// for multi GPU, get the row boundaries from tensor split
|
| 1500 |
// and round to mul_mat_q tile sizes
|
| 1501 |
if (split) {
|
| 1502 |
-
const int64_t rounding = get_row_rounding(
|
| 1503 |
|
| 1504 |
if (id != 0) {
|
| 1505 |
dev[id].row_low = ne01*tensor_split[id];
|
|
|
|
| 633 |
|
| 634 |
// cuda split buffer
|
| 635 |
|
| 636 |
+
static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
|
| 637 |
+
int64_t row_rounding = 0;
|
|
|
|
| 638 |
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
| 639 |
+
if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
|
| 640 |
+
continue;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
}
|
|
|
|
| 642 |
|
| 643 |
+
const int cc = ggml_cuda_info().devices[id].cc;
|
| 644 |
+
row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc, get_mmq_x_max_host(cc)));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 645 |
}
|
| 646 |
+
return row_rounding;
|
| 647 |
}
|
| 648 |
|
| 649 |
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
|
| 650 |
const int64_t nrows = ggml_nrows(tensor);
|
| 651 |
+
const int64_t rounding = get_row_rounding(tensor_split);
|
| 652 |
|
| 653 |
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
|
| 654 |
*row_low -= *row_low % rounding;
|
|
|
|
| 1433 |
// for multi GPU, get the row boundaries from tensor split
|
| 1434 |
// and round to mul_mat_q tile sizes
|
| 1435 |
if (split) {
|
| 1436 |
+
const int64_t rounding = get_row_rounding(tensor_split);
|
| 1437 |
|
| 1438 |
if (id != 0) {
|
| 1439 |
dev[id].row_low = ne01*tensor_split[id];
|
ggml-cuda/common.cuh
CHANGED
|
@@ -160,7 +160,7 @@
|
|
| 160 |
#endif
|
| 161 |
|
| 162 |
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
|
| 163 |
-
#define MMQ_MAX_BATCH_SIZE
|
| 164 |
|
| 165 |
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
| 166 |
|
|
@@ -484,6 +484,161 @@ static __device__ __forceinline__ float get_alibi_slope(
|
|
| 484 |
return powf(base, exph);
|
| 485 |
}
|
| 486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
//////////////////////
|
| 488 |
|
| 489 |
struct ggml_cuda_device_info {
|
|
|
|
| 160 |
#endif
|
| 161 |
|
| 162 |
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
|
| 163 |
+
#define MMQ_MAX_BATCH_SIZE 64 // max batch size to use MMQ kernels when tensor cores are available
|
| 164 |
|
| 165 |
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
| 166 |
|
|
|
|
| 484 |
return powf(base, exph);
|
| 485 |
}
|
| 486 |
|
| 487 |
+
template <ggml_type type>
|
| 488 |
+
struct ggml_cuda_type_traits;
|
| 489 |
+
|
| 490 |
+
template<>
|
| 491 |
+
struct ggml_cuda_type_traits<GGML_TYPE_F16> {
|
| 492 |
+
static constexpr int qk = 1;
|
| 493 |
+
static constexpr int qr = 1;
|
| 494 |
+
};
|
| 495 |
+
|
| 496 |
+
template<>
|
| 497 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
|
| 498 |
+
static constexpr int qk = QK4_0;
|
| 499 |
+
static constexpr int qr = QR4_0;
|
| 500 |
+
static constexpr int qi = QI4_0;
|
| 501 |
+
};
|
| 502 |
+
|
| 503 |
+
template<>
|
| 504 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
|
| 505 |
+
static constexpr int qk = QK4_1;
|
| 506 |
+
static constexpr int qr = QR4_1;
|
| 507 |
+
static constexpr int qi = QI4_1;
|
| 508 |
+
};
|
| 509 |
+
|
| 510 |
+
template<>
|
| 511 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
|
| 512 |
+
static constexpr int qk = QK5_0;
|
| 513 |
+
static constexpr int qr = QR5_0;
|
| 514 |
+
static constexpr int qi = QI5_0;
|
| 515 |
+
};
|
| 516 |
+
|
| 517 |
+
template<>
|
| 518 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
|
| 519 |
+
static constexpr int qk = QK5_1;
|
| 520 |
+
static constexpr int qr = QR5_1;
|
| 521 |
+
static constexpr int qi = QI5_1;
|
| 522 |
+
};
|
| 523 |
+
|
| 524 |
+
template<>
|
| 525 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
|
| 526 |
+
static constexpr int qk = QK8_0;
|
| 527 |
+
static constexpr int qr = QR8_0;
|
| 528 |
+
static constexpr int qi = QI8_0;
|
| 529 |
+
};
|
| 530 |
+
|
| 531 |
+
template<>
|
| 532 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
|
| 533 |
+
static constexpr int qk = QK_K;
|
| 534 |
+
static constexpr int qr = QR2_K;
|
| 535 |
+
static constexpr int qi = QI2_K;
|
| 536 |
+
};
|
| 537 |
+
|
| 538 |
+
template<>
|
| 539 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
|
| 540 |
+
static constexpr int qk = QK_K;
|
| 541 |
+
static constexpr int qr = QR3_K;
|
| 542 |
+
static constexpr int qi = QI3_K;
|
| 543 |
+
};
|
| 544 |
+
|
| 545 |
+
template<>
|
| 546 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
|
| 547 |
+
static constexpr int qk = QK_K;
|
| 548 |
+
static constexpr int qr = QR4_K;
|
| 549 |
+
static constexpr int qi = QI4_K;
|
| 550 |
+
};
|
| 551 |
+
|
| 552 |
+
template<>
|
| 553 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
|
| 554 |
+
static constexpr int qk = QK_K;
|
| 555 |
+
static constexpr int qr = QR5_K;
|
| 556 |
+
static constexpr int qi = QI5_K;
|
| 557 |
+
};
|
| 558 |
+
|
| 559 |
+
template<>
|
| 560 |
+
struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
|
| 561 |
+
static constexpr int qk = QK_K;
|
| 562 |
+
static constexpr int qr = QR6_K;
|
| 563 |
+
static constexpr int qi = QI6_K;
|
| 564 |
+
};
|
| 565 |
+
|
| 566 |
+
template<>
|
| 567 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
|
| 568 |
+
static constexpr int qk = QK_K;
|
| 569 |
+
static constexpr int qr = QR2_XXS;
|
| 570 |
+
static constexpr int qi = QI2_XXS;
|
| 571 |
+
};
|
| 572 |
+
|
| 573 |
+
template<>
|
| 574 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
|
| 575 |
+
static constexpr int qk = QK_K;
|
| 576 |
+
static constexpr int qr = QR2_XS;
|
| 577 |
+
static constexpr int qi = QI2_XS;
|
| 578 |
+
};
|
| 579 |
+
|
| 580 |
+
template<>
|
| 581 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
|
| 582 |
+
static constexpr int qk = QK_K;
|
| 583 |
+
static constexpr int qr = QR2_S;
|
| 584 |
+
static constexpr int qi = QI2_S;
|
| 585 |
+
};
|
| 586 |
+
|
| 587 |
+
template<>
|
| 588 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
|
| 589 |
+
static constexpr int qk = QK_K;
|
| 590 |
+
static constexpr int qr = QR3_XXS;
|
| 591 |
+
static constexpr int qi = QI3_XXS;
|
| 592 |
+
};
|
| 593 |
+
|
| 594 |
+
template<>
|
| 595 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
|
| 596 |
+
static constexpr int qk = QK_K;
|
| 597 |
+
static constexpr int qr = QR1_S;
|
| 598 |
+
static constexpr int qi = QI1_S;
|
| 599 |
+
};
|
| 600 |
+
|
| 601 |
+
template<>
|
| 602 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
|
| 603 |
+
static constexpr int qk = QK_K;
|
| 604 |
+
static constexpr int qr = QR1_M;
|
| 605 |
+
static constexpr int qi = QI1_M;
|
| 606 |
+
};
|
| 607 |
+
|
| 608 |
+
template<>
|
| 609 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
|
| 610 |
+
static constexpr int qk = QK4_NL;
|
| 611 |
+
static constexpr int qr = QR4_NL;
|
| 612 |
+
static constexpr int qi = QI4_NL;
|
| 613 |
+
};
|
| 614 |
+
|
| 615 |
+
template<>
|
| 616 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
|
| 617 |
+
static constexpr int qk = QK_K;
|
| 618 |
+
static constexpr int qr = QR4_XS;
|
| 619 |
+
static constexpr int qi = QI4_XS;
|
| 620 |
+
};
|
| 621 |
+
|
| 622 |
+
template<>
|
| 623 |
+
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
|
| 624 |
+
static constexpr int qk = QK_K;
|
| 625 |
+
static constexpr int qr = QR3_S;
|
| 626 |
+
static constexpr int qi = QI3_S;
|
| 627 |
+
};
|
| 628 |
+
|
| 629 |
+
static int get_mmq_x_max_host(const int cc) {
|
| 630 |
+
#ifdef CUDA_USE_TENSOR_CORES
|
| 631 |
+
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_MAX_BATCH_SIZE : 64;
|
| 632 |
+
#else
|
| 633 |
+
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
|
| 634 |
+
#endif // CUDA_USE_TENSOR_CORES
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
// Round rows to this value for --split-mode row:
|
| 638 |
+
static int get_mmq_y_host(const int cc, const int mmq_x) {
|
| 639 |
+
return cc >= CC_VOLTA && mmq_x >= 32 ? 128 : 64;
|
| 640 |
+
}
|
| 641 |
+
|
| 642 |
//////////////////////
|
| 643 |
|
| 644 |
struct ggml_cuda_device_info {
|
ggml-cuda/dmmv.cu
CHANGED
|
@@ -422,10 +422,22 @@ static __device__ void convert_f16(const void * vx, const int64_t ib, const int
|
|
| 422 |
v.y = x[ib + iqs + 1];
|
| 423 |
}
|
| 424 |
|
| 425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
| 427 |
-
|
| 428 |
-
|
|
|
|
|
|
|
| 429 |
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
|
| 430 |
|
| 431 |
if (row >= nrows) {
|
|
@@ -493,7 +505,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y,
|
|
| 493 |
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
| 494 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 495 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 496 |
-
dequantize_mul_mat_vec<
|
| 497 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 498 |
}
|
| 499 |
|
|
@@ -502,7 +514,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y,
|
|
| 502 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 503 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 504 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 505 |
-
dequantize_mul_mat_vec<
|
| 506 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 507 |
}
|
| 508 |
|
|
@@ -511,7 +523,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y,
|
|
| 511 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 512 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 513 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 514 |
-
dequantize_mul_mat_vec<
|
| 515 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 516 |
}
|
| 517 |
|
|
@@ -520,7 +532,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y,
|
|
| 520 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 521 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 522 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 523 |
-
dequantize_mul_mat_vec<
|
| 524 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 525 |
}
|
| 526 |
|
|
@@ -529,7 +541,7 @@ static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y,
|
|
| 529 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 530 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 531 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 532 |
-
dequantize_mul_mat_vec<
|
| 533 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 534 |
}
|
| 535 |
|
|
@@ -580,7 +592,7 @@ static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, floa
|
|
| 580 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 581 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 582 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 583 |
-
dequantize_mul_mat_vec<
|
| 584 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 585 |
}
|
| 586 |
|
|
|
|
| 422 |
v.y = x[ib + iqs + 1];
|
| 423 |
}
|
| 424 |
|
| 425 |
+
static constexpr __device__ dequantize_kernel_t get_dequantize_kernel(ggml_type type) {
|
| 426 |
+
return type == GGML_TYPE_Q4_0 ? dequantize_q4_0 :
|
| 427 |
+
type == GGML_TYPE_Q4_1 ? dequantize_q4_1 :
|
| 428 |
+
type == GGML_TYPE_Q5_0 ? dequantize_q5_0 :
|
| 429 |
+
type == GGML_TYPE_Q5_1 ? dequantize_q5_1 :
|
| 430 |
+
type == GGML_TYPE_Q8_0 ? dequantize_q8_0 :
|
| 431 |
+
type == GGML_TYPE_F16 ? convert_f16 :
|
| 432 |
+
nullptr;
|
| 433 |
+
}
|
| 434 |
+
|
| 435 |
+
template <ggml_type type>
|
| 436 |
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
| 437 |
+
constexpr int qk = ggml_cuda_type_traits<type>::qk; // quantized weights per x block
|
| 438 |
+
constexpr int qr = ggml_cuda_type_traits<type>::qr; // number of quantized weights per data value in x block
|
| 439 |
+
constexpr dequantize_kernel_t dequantize_kernel = get_dequantize_kernel(type);
|
| 440 |
+
|
| 441 |
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
|
| 442 |
|
| 443 |
if (row >= nrows) {
|
|
|
|
| 505 |
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
| 506 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 507 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 508 |
+
dequantize_mul_mat_vec<GGML_TYPE_Q4_0>
|
| 509 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 510 |
}
|
| 511 |
|
|
|
|
| 514 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 515 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 516 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 517 |
+
dequantize_mul_mat_vec<GGML_TYPE_Q4_1>
|
| 518 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 519 |
}
|
| 520 |
|
|
|
|
| 523 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 524 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 525 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 526 |
+
dequantize_mul_mat_vec<GGML_TYPE_Q5_0>
|
| 527 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 528 |
}
|
| 529 |
|
|
|
|
| 532 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 533 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 534 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 535 |
+
dequantize_mul_mat_vec<GGML_TYPE_Q5_1>
|
| 536 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 537 |
}
|
| 538 |
|
|
|
|
| 541 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 542 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 543 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 544 |
+
dequantize_mul_mat_vec<GGML_TYPE_Q8_0>
|
| 545 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 546 |
}
|
| 547 |
|
|
|
|
| 592 |
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
| 593 |
const dim3 block_nums(block_num_y, 1, 1);
|
| 594 |
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
| 595 |
+
dequantize_mul_mat_vec<GGML_TYPE_F16>
|
| 596 |
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
| 597 |
}
|
| 598 |
|
ggml-cuda/mmq.cu
CHANGED
|
@@ -1,1450 +1,4 @@
|
|
| 1 |
#include "mmq.cuh"
|
| 2 |
-
#include "vecdotq.cuh"
|
| 3 |
-
|
| 4 |
-
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
|
| 5 |
-
typedef void (*load_tiles_cuda_t)(
|
| 6 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 7 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
|
| 8 |
-
typedef float (*vec_dot_q_mul_mat_cuda_t)(
|
| 9 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 10 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
|
| 11 |
-
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
|
| 12 |
-
typedef void (mul_mat_q_t)(
|
| 13 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 14 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst);
|
| 15 |
-
|
| 16 |
-
struct mmq_arch_config_t {
|
| 17 |
-
int x;
|
| 18 |
-
int y;
|
| 19 |
-
int nwarps;
|
| 20 |
-
};
|
| 21 |
-
|
| 22 |
-
struct mmq_config_t {
|
| 23 |
-
mmq_arch_config_t rdna2;
|
| 24 |
-
mmq_arch_config_t rdna1;
|
| 25 |
-
mmq_arch_config_t ampere;
|
| 26 |
-
mmq_arch_config_t pascal;
|
| 27 |
-
};
|
| 28 |
-
|
| 29 |
-
constexpr mmq_config_t MMQ_CONFIG_Q4_0 = {
|
| 30 |
-
// x y nwarps
|
| 31 |
-
{ 64, 128, 8},
|
| 32 |
-
{ 64, 64, 8},
|
| 33 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 34 |
-
{ 4, 32, 4},
|
| 35 |
-
#else
|
| 36 |
-
{ 64, 128, 4},
|
| 37 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 38 |
-
{ 64, 64, 8},
|
| 39 |
-
};
|
| 40 |
-
constexpr mmq_config_t MMQ_CONFIG_Q4_1 = {
|
| 41 |
-
// x y nwarps
|
| 42 |
-
{ 64, 128, 8},
|
| 43 |
-
{ 64, 64, 8},
|
| 44 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 45 |
-
{ 4, 32, 4},
|
| 46 |
-
#else
|
| 47 |
-
{ 64, 128, 4},
|
| 48 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 49 |
-
{ 64, 64, 8},
|
| 50 |
-
};
|
| 51 |
-
constexpr mmq_config_t MMQ_CONFIG_Q5_0 = {
|
| 52 |
-
// x y nwarps
|
| 53 |
-
{ 64, 128, 8},
|
| 54 |
-
{ 64, 64, 8},
|
| 55 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 56 |
-
{ 4, 32, 4},
|
| 57 |
-
#else
|
| 58 |
-
{128, 64, 4},
|
| 59 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 60 |
-
{ 64, 64, 8},
|
| 61 |
-
};
|
| 62 |
-
constexpr mmq_config_t MMQ_CONFIG_Q5_1 = {
|
| 63 |
-
// x y nwarps
|
| 64 |
-
{ 64, 128, 8},
|
| 65 |
-
{ 64, 64, 8},
|
| 66 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 67 |
-
{ 4, 32, 4},
|
| 68 |
-
#else
|
| 69 |
-
{128, 64, 4},
|
| 70 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 71 |
-
{ 64, 64, 8},
|
| 72 |
-
};
|
| 73 |
-
constexpr mmq_config_t MMQ_CONFIG_Q8_0 = {
|
| 74 |
-
// x y nwarps
|
| 75 |
-
{ 64, 128, 8},
|
| 76 |
-
{ 64, 64, 8},
|
| 77 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 78 |
-
{ 4, 32, 4},
|
| 79 |
-
#else
|
| 80 |
-
{128, 64, 4},
|
| 81 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 82 |
-
{ 64, 64, 8},
|
| 83 |
-
};
|
| 84 |
-
constexpr mmq_config_t MMQ_CONFIG_Q2_K = {
|
| 85 |
-
// x y nwarps
|
| 86 |
-
{ 64, 128, 8},
|
| 87 |
-
{128, 32, 8},
|
| 88 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 89 |
-
{ 4, 32, 4},
|
| 90 |
-
#else
|
| 91 |
-
{ 64, 128, 4},
|
| 92 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 93 |
-
{ 64, 64, 8},
|
| 94 |
-
};
|
| 95 |
-
constexpr mmq_config_t MMQ_CONFIG_Q3_K = {
|
| 96 |
-
// x y nwarps
|
| 97 |
-
{128, 64, 8},
|
| 98 |
-
{ 32, 128, 8},
|
| 99 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 100 |
-
{ 4, 32, 4},
|
| 101 |
-
#else
|
| 102 |
-
{128, 128, 4},
|
| 103 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 104 |
-
{ 64, 64, 8},
|
| 105 |
-
};
|
| 106 |
-
constexpr mmq_config_t MMQ_CONFIG_Q4_K = {
|
| 107 |
-
// x y nwarps
|
| 108 |
-
{ 64, 128, 8},
|
| 109 |
-
{ 32, 64, 8},
|
| 110 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 111 |
-
{ 4, 32, 4},
|
| 112 |
-
#else
|
| 113 |
-
{ 64, 128, 4},
|
| 114 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 115 |
-
{ 64, 64, 8},
|
| 116 |
-
};
|
| 117 |
-
constexpr mmq_config_t MMQ_CONFIG_Q5_K = {
|
| 118 |
-
// x y nwarps
|
| 119 |
-
{ 64, 128, 8},
|
| 120 |
-
{ 32, 64, 8},
|
| 121 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 122 |
-
{ 4, 32, 4},
|
| 123 |
-
#else
|
| 124 |
-
{ 64, 128, 4},
|
| 125 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 126 |
-
{ 64, 64, 8},
|
| 127 |
-
};
|
| 128 |
-
constexpr mmq_config_t MMQ_CONFIG_Q6_K = {
|
| 129 |
-
// x y nwarps
|
| 130 |
-
{ 64, 128, 8},
|
| 131 |
-
{ 32, 64, 8},
|
| 132 |
-
#ifdef CUDA_USE_TENSOR_CORES
|
| 133 |
-
{ 4, 32, 4},
|
| 134 |
-
#else
|
| 135 |
-
{ 64, 64, 4},
|
| 136 |
-
#endif // CUDA_USE_TENSOR_CORES
|
| 137 |
-
{ 64, 64, 8},
|
| 138 |
-
};
|
| 139 |
-
|
| 140 |
-
// ------------------------------------------------------------
|
| 141 |
-
|
| 142 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 143 |
-
GGML_UNUSED(x_qh);
|
| 144 |
-
GGML_UNUSED(x_sc);
|
| 145 |
-
|
| 146 |
-
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
| 147 |
-
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
|
| 148 |
-
|
| 149 |
-
*x_ql = tile_x_qs;
|
| 150 |
-
*x_dm = (half2 *) tile_x_d;
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
| 154 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 155 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 156 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 157 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 158 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 159 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 160 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 161 |
-
|
| 162 |
-
const int kbx = k / QI4_0;
|
| 163 |
-
const int kqsx = k % QI4_0;
|
| 164 |
-
|
| 165 |
-
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
|
| 166 |
-
|
| 167 |
-
float * x_dmf = (float *) x_dm;
|
| 168 |
-
|
| 169 |
-
#pragma unroll
|
| 170 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 171 |
-
int i = i0 + i_offset;
|
| 172 |
-
|
| 173 |
-
if (need_check) {
|
| 174 |
-
i = min(i, i_max);
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
| 178 |
-
|
| 179 |
-
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
| 180 |
-
// x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
|
| 181 |
-
}
|
| 182 |
-
|
| 183 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
|
| 184 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 185 |
-
|
| 186 |
-
#pragma unroll
|
| 187 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
|
| 188 |
-
int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
|
| 189 |
-
|
| 190 |
-
if (need_check) {
|
| 191 |
-
i = min(i, i_max);
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
-
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 195 |
-
|
| 196 |
-
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
|
| 197 |
-
}
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
|
| 201 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 202 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 203 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 204 |
-
|
| 205 |
-
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
| 206 |
-
const float * x_dmf = (const float *) x_dm;
|
| 207 |
-
|
| 208 |
-
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
| 209 |
-
|
| 210 |
-
#pragma unroll
|
| 211 |
-
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
|
| 212 |
-
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 213 |
-
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
|
| 214 |
-
}
|
| 215 |
-
|
| 216 |
-
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
|
| 217 |
-
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
|
| 218 |
-
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 219 |
-
}
|
| 220 |
-
|
| 221 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 222 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 223 |
-
|
| 224 |
-
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
|
| 225 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
|
| 226 |
-
|
| 227 |
-
*x_ql = tile_x_qs;
|
| 228 |
-
*x_dm = tile_x_dm;
|
| 229 |
-
}
|
| 230 |
-
|
| 231 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
| 232 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 233 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 234 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 235 |
-
|
| 236 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 237 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 238 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 239 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 240 |
-
|
| 241 |
-
const int kbx = k / QI4_1;
|
| 242 |
-
const int kqsx = k % QI4_1;
|
| 243 |
-
|
| 244 |
-
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
|
| 245 |
-
|
| 246 |
-
#pragma unroll
|
| 247 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 248 |
-
int i = i0 + i_offset;
|
| 249 |
-
|
| 250 |
-
if (need_check) {
|
| 251 |
-
i = min(i, i_max);
|
| 252 |
-
}
|
| 253 |
-
|
| 254 |
-
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
| 255 |
-
|
| 256 |
-
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 257 |
-
}
|
| 258 |
-
|
| 259 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
|
| 260 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 261 |
-
|
| 262 |
-
#pragma unroll
|
| 263 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
|
| 264 |
-
int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
|
| 265 |
-
|
| 266 |
-
if (need_check) {
|
| 267 |
-
i = min(i, i_max);
|
| 268 |
-
}
|
| 269 |
-
|
| 270 |
-
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 271 |
-
|
| 272 |
-
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
|
| 273 |
-
}
|
| 274 |
-
}
|
| 275 |
-
|
| 276 |
-
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
|
| 277 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 278 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 279 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 280 |
-
|
| 281 |
-
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
| 282 |
-
|
| 283 |
-
int u[2*VDR_Q4_1_Q8_1_MMQ];
|
| 284 |
-
|
| 285 |
-
#pragma unroll
|
| 286 |
-
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
|
| 287 |
-
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 288 |
-
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
|
| 289 |
-
}
|
| 290 |
-
|
| 291 |
-
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
|
| 292 |
-
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
|
| 293 |
-
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 294 |
-
}
|
| 295 |
-
|
| 296 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 297 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 298 |
-
|
| 299 |
-
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
| 300 |
-
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
|
| 301 |
-
|
| 302 |
-
*x_ql = tile_x_ql;
|
| 303 |
-
*x_dm = (half2 *) tile_x_d;
|
| 304 |
-
}
|
| 305 |
-
|
| 306 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
| 307 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 308 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 309 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 310 |
-
|
| 311 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 312 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 313 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 314 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 315 |
-
|
| 316 |
-
const int kbx = k / QI5_0;
|
| 317 |
-
const int kqsx = k % QI5_0;
|
| 318 |
-
|
| 319 |
-
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
|
| 320 |
-
|
| 321 |
-
#pragma unroll
|
| 322 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 323 |
-
int i = i0 + i_offset;
|
| 324 |
-
|
| 325 |
-
if (need_check) {
|
| 326 |
-
i = min(i, i_max);
|
| 327 |
-
}
|
| 328 |
-
|
| 329 |
-
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
| 330 |
-
|
| 331 |
-
const int ql = get_int_from_uint8(bxi->qs, kqsx);
|
| 332 |
-
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
|
| 333 |
-
|
| 334 |
-
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
| 335 |
-
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
| 336 |
-
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
| 337 |
-
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
| 338 |
-
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
| 339 |
-
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
|
| 340 |
-
|
| 341 |
-
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
| 342 |
-
|
| 343 |
-
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
| 344 |
-
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
| 345 |
-
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
| 346 |
-
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
| 347 |
-
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
| 348 |
-
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
|
| 349 |
-
|
| 350 |
-
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
| 351 |
-
}
|
| 352 |
-
|
| 353 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
|
| 354 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 355 |
-
float * x_dmf = (float *) x_dm;
|
| 356 |
-
|
| 357 |
-
#pragma unroll
|
| 358 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
|
| 359 |
-
int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
|
| 360 |
-
|
| 361 |
-
if (need_check) {
|
| 362 |
-
i = min(i, i_max);
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 366 |
-
|
| 367 |
-
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
|
| 368 |
-
}
|
| 369 |
-
}
|
| 370 |
-
|
| 371 |
-
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
| 372 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 373 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 374 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 375 |
-
|
| 376 |
-
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
| 377 |
-
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
| 378 |
-
const float * x_dmf = (const float *) x_dm;
|
| 379 |
-
const float * y_df = (const float *) y_ds;
|
| 380 |
-
|
| 381 |
-
int u[2*VDR_Q5_0_Q8_1_MMQ];
|
| 382 |
-
|
| 383 |
-
#pragma unroll
|
| 384 |
-
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
|
| 385 |
-
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 386 |
-
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
| 387 |
-
}
|
| 388 |
-
|
| 389 |
-
return vec_dot_q8_0_q8_1_impl<float, QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
| 390 |
-
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 391 |
-
}
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 395 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 396 |
-
|
| 397 |
-
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
| 398 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
|
| 399 |
-
|
| 400 |
-
*x_ql = tile_x_ql;
|
| 401 |
-
*x_dm = tile_x_dm;
|
| 402 |
-
}
|
| 403 |
-
|
| 404 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
| 405 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 406 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 407 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 408 |
-
|
| 409 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 410 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 411 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 412 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 413 |
-
|
| 414 |
-
const int kbx = k / QI5_1;
|
| 415 |
-
const int kqsx = k % QI5_1;
|
| 416 |
-
|
| 417 |
-
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
|
| 418 |
-
|
| 419 |
-
#pragma unroll
|
| 420 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 421 |
-
int i = i0 + i_offset;
|
| 422 |
-
|
| 423 |
-
if (need_check) {
|
| 424 |
-
i = min(i, i_max);
|
| 425 |
-
}
|
| 426 |
-
|
| 427 |
-
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
| 428 |
-
|
| 429 |
-
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 430 |
-
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
|
| 431 |
-
|
| 432 |
-
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
| 433 |
-
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
| 434 |
-
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
| 435 |
-
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
| 436 |
-
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
| 437 |
-
|
| 438 |
-
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
| 439 |
-
|
| 440 |
-
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
| 441 |
-
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
| 442 |
-
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
| 443 |
-
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
| 444 |
-
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
| 445 |
-
|
| 446 |
-
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
| 447 |
-
}
|
| 448 |
-
|
| 449 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
|
| 450 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 451 |
-
|
| 452 |
-
#pragma unroll
|
| 453 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
|
| 454 |
-
int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
|
| 455 |
-
|
| 456 |
-
if (need_check) {
|
| 457 |
-
i = min(i, i_max);
|
| 458 |
-
}
|
| 459 |
-
|
| 460 |
-
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 461 |
-
|
| 462 |
-
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
|
| 463 |
-
}
|
| 464 |
-
}
|
| 465 |
-
|
| 466 |
-
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
|
| 467 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 468 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 469 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 470 |
-
|
| 471 |
-
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
| 472 |
-
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
| 473 |
-
|
| 474 |
-
int u[2*VDR_Q5_1_Q8_1_MMQ];
|
| 475 |
-
|
| 476 |
-
#pragma unroll
|
| 477 |
-
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
|
| 478 |
-
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 479 |
-
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
|
| 480 |
-
}
|
| 481 |
-
|
| 482 |
-
return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
|
| 483 |
-
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 484 |
-
}
|
| 485 |
-
|
| 486 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 487 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 488 |
-
|
| 489 |
-
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
| 490 |
-
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
|
| 491 |
-
|
| 492 |
-
*x_ql = tile_x_qs;
|
| 493 |
-
*x_dm = (half2 *) tile_x_d;
|
| 494 |
-
}
|
| 495 |
-
|
| 496 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
| 497 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 498 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 499 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 500 |
-
|
| 501 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 502 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 503 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 504 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 505 |
-
|
| 506 |
-
const int kbx = k / QI8_0;
|
| 507 |
-
const int kqsx = k % QI8_0;
|
| 508 |
-
float * x_dmf = (float *) x_dm;
|
| 509 |
-
|
| 510 |
-
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
|
| 511 |
-
|
| 512 |
-
#pragma unroll
|
| 513 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 514 |
-
int i = i0 + i_offset;
|
| 515 |
-
|
| 516 |
-
if (need_check) {
|
| 517 |
-
i = min(i, i_max);
|
| 518 |
-
}
|
| 519 |
-
|
| 520 |
-
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
| 521 |
-
|
| 522 |
-
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
|
| 523 |
-
}
|
| 524 |
-
|
| 525 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
|
| 526 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 527 |
-
|
| 528 |
-
#pragma unroll
|
| 529 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
|
| 530 |
-
int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
|
| 531 |
-
|
| 532 |
-
if (need_check) {
|
| 533 |
-
i = min(i, i_max);
|
| 534 |
-
}
|
| 535 |
-
|
| 536 |
-
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 537 |
-
|
| 538 |
-
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
|
| 539 |
-
}
|
| 540 |
-
}
|
| 541 |
-
|
| 542 |
-
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
| 543 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 544 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 545 |
-
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 546 |
-
|
| 547 |
-
const float * x_dmf = (const float *) x_dm;
|
| 548 |
-
const float * y_df = (const float *) y_ds;
|
| 549 |
-
|
| 550 |
-
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
|
| 551 |
-
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
| 552 |
-
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
| 553 |
-
}
|
| 554 |
-
|
| 555 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 556 |
-
GGML_UNUSED(x_qh);
|
| 557 |
-
|
| 558 |
-
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
| 559 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
|
| 560 |
-
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
|
| 561 |
-
|
| 562 |
-
*x_ql = tile_x_ql;
|
| 563 |
-
*x_dm = tile_x_dm;
|
| 564 |
-
*x_sc = tile_x_sc;
|
| 565 |
-
}
|
| 566 |
-
|
| 567 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
| 568 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 569 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 570 |
-
GGML_UNUSED(x_qh);
|
| 571 |
-
|
| 572 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 573 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 574 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 575 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 576 |
-
|
| 577 |
-
const int kbx = k / QI2_K;
|
| 578 |
-
const int kqsx = k % QI2_K;
|
| 579 |
-
|
| 580 |
-
const block_q2_K * bx0 = (const block_q2_K *) vx;
|
| 581 |
-
|
| 582 |
-
#pragma unroll
|
| 583 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 584 |
-
int i = i0 + i_offset;
|
| 585 |
-
|
| 586 |
-
if (need_check) {
|
| 587 |
-
i = min(i, i_max);
|
| 588 |
-
}
|
| 589 |
-
|
| 590 |
-
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
|
| 591 |
-
|
| 592 |
-
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 593 |
-
}
|
| 594 |
-
|
| 595 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
|
| 596 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 597 |
-
|
| 598 |
-
#pragma unroll
|
| 599 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
|
| 600 |
-
int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
|
| 601 |
-
|
| 602 |
-
if (need_check) {
|
| 603 |
-
i = min(i, i_max);
|
| 604 |
-
}
|
| 605 |
-
|
| 606 |
-
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 607 |
-
|
| 608 |
-
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
|
| 609 |
-
}
|
| 610 |
-
|
| 611 |
-
#pragma unroll
|
| 612 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
| 613 |
-
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
| 614 |
-
|
| 615 |
-
if (need_check) {
|
| 616 |
-
i = min(i, i_max);
|
| 617 |
-
}
|
| 618 |
-
|
| 619 |
-
const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
|
| 620 |
-
|
| 621 |
-
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
|
| 622 |
-
}
|
| 623 |
-
}
|
| 624 |
-
|
| 625 |
-
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
|
| 626 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 627 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 628 |
-
GGML_UNUSED(x_qh);
|
| 629 |
-
|
| 630 |
-
const int kbx = k / QI2_K;
|
| 631 |
-
const int ky = (k % QI2_K) * QR2_K;
|
| 632 |
-
const float * y_df = (const float *) y_ds;
|
| 633 |
-
|
| 634 |
-
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
|
| 635 |
-
|
| 636 |
-
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
|
| 637 |
-
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
|
| 638 |
-
|
| 639 |
-
#pragma unroll
|
| 640 |
-
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
|
| 641 |
-
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
| 642 |
-
}
|
| 643 |
-
|
| 644 |
-
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
|
| 645 |
-
|
| 646 |
-
const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
|
| 647 |
-
return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
|
| 648 |
-
}
|
| 649 |
-
|
| 650 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 651 |
-
|
| 652 |
-
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
| 653 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
|
| 654 |
-
__shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
|
| 655 |
-
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
|
| 656 |
-
|
| 657 |
-
*x_ql = tile_x_ql;
|
| 658 |
-
*x_dm = tile_x_dm;
|
| 659 |
-
*x_qh = tile_x_qh;
|
| 660 |
-
*x_sc = tile_x_sc;
|
| 661 |
-
}
|
| 662 |
-
|
| 663 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
|
| 664 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 665 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 666 |
-
|
| 667 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 668 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 669 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 670 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 671 |
-
|
| 672 |
-
const int kbx = k / QI3_K;
|
| 673 |
-
const int kqsx = k % QI3_K;
|
| 674 |
-
|
| 675 |
-
const block_q3_K * bx0 = (const block_q3_K *) vx;
|
| 676 |
-
|
| 677 |
-
#pragma unroll
|
| 678 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 679 |
-
int i = i0 + i_offset;
|
| 680 |
-
|
| 681 |
-
if (need_check) {
|
| 682 |
-
i = min(i, i_max);
|
| 683 |
-
}
|
| 684 |
-
|
| 685 |
-
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
|
| 686 |
-
|
| 687 |
-
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
| 688 |
-
}
|
| 689 |
-
|
| 690 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
|
| 691 |
-
const int kbxd = k % blocks_per_tile_x_row;
|
| 692 |
-
float * x_dmf = (float *) x_dm;
|
| 693 |
-
|
| 694 |
-
#pragma unroll
|
| 695 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
|
| 696 |
-
int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
|
| 697 |
-
|
| 698 |
-
if (need_check) {
|
| 699 |
-
i = min(i, i_max);
|
| 700 |
-
}
|
| 701 |
-
|
| 702 |
-
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 703 |
-
|
| 704 |
-
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
|
| 705 |
-
}
|
| 706 |
-
|
| 707 |
-
#pragma unroll
|
| 708 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
|
| 709 |
-
int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
|
| 710 |
-
|
| 711 |
-
if (need_check) {
|
| 712 |
-
i = min(i, i_max);
|
| 713 |
-
}
|
| 714 |
-
|
| 715 |
-
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
|
| 716 |
-
|
| 717 |
-
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
| 718 |
-
x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
|
| 719 |
-
}
|
| 720 |
-
|
| 721 |
-
#pragma unroll
|
| 722 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
| 723 |
-
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
| 724 |
-
|
| 725 |
-
if (need_check) {
|
| 726 |
-
i = min(i, i_max);
|
| 727 |
-
}
|
| 728 |
-
|
| 729 |
-
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
|
| 730 |
-
|
| 731 |
-
const int ksc = k % (QI3_K/4);
|
| 732 |
-
|
| 733 |
-
const int ksc_low = ksc % (QI3_K/8);
|
| 734 |
-
const int shift_low = 4 * (ksc / (QI3_K/8));
|
| 735 |
-
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
|
| 736 |
-
|
| 737 |
-
const int ksc_high = QI3_K/8;
|
| 738 |
-
const int shift_high = 2 * ksc;
|
| 739 |
-
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
|
| 740 |
-
|
| 741 |
-
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
|
| 742 |
-
|
| 743 |
-
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
|
| 744 |
-
}
|
| 745 |
-
}
|
| 746 |
-
|
| 747 |
-
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
|
| 748 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 749 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 750 |
-
|
| 751 |
-
const int kbx = k / QI3_K;
|
| 752 |
-
const int ky = (k % QI3_K) * QR3_K;
|
| 753 |
-
const float * x_dmf = (const float *) x_dm;
|
| 754 |
-
const float * y_df = (const float *) y_ds;
|
| 755 |
-
|
| 756 |
-
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
| 757 |
-
|
| 758 |
-
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
| 759 |
-
|
| 760 |
-
#pragma unroll
|
| 761 |
-
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
|
| 762 |
-
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
|
| 763 |
-
const int shift = 2 * ((ky % 32) / 8);
|
| 764 |
-
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
| 765 |
-
|
| 766 |
-
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
|
| 767 |
-
const int vlh = (vh << 2) & 0x04040404;
|
| 768 |
-
|
| 769 |
-
v[l] = __vsubss4(vll, vlh);
|
| 770 |
-
}
|
| 771 |
-
|
| 772 |
-
const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
|
| 773 |
-
return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
|
| 774 |
-
}
|
| 775 |
-
|
| 776 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 777 |
-
GGML_UNUSED(x_qh);
|
| 778 |
-
|
| 779 |
-
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
| 780 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
|
| 781 |
-
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
| 782 |
-
|
| 783 |
-
*x_ql = tile_x_ql;
|
| 784 |
-
*x_dm = tile_x_dm;
|
| 785 |
-
*x_sc = tile_x_sc;
|
| 786 |
-
}
|
| 787 |
-
|
| 788 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
| 789 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 790 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 791 |
-
GGML_UNUSED(x_qh);
|
| 792 |
-
|
| 793 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 794 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 795 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 796 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 797 |
-
|
| 798 |
-
const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
| 799 |
-
const int kqsx = k % QI4_K; // == k if QK_K == 256
|
| 800 |
-
|
| 801 |
-
const block_q4_K * bx0 = (const block_q4_K *) vx;
|
| 802 |
-
|
| 803 |
-
#pragma unroll
|
| 804 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 805 |
-
int i = i0 + i_offset;
|
| 806 |
-
|
| 807 |
-
if (need_check) {
|
| 808 |
-
i = min(i, i_max);
|
| 809 |
-
}
|
| 810 |
-
|
| 811 |
-
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
|
| 812 |
-
|
| 813 |
-
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 814 |
-
}
|
| 815 |
-
|
| 816 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
|
| 817 |
-
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
| 818 |
-
|
| 819 |
-
#pragma unroll
|
| 820 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
|
| 821 |
-
int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
|
| 822 |
-
|
| 823 |
-
if (need_check) {
|
| 824 |
-
i = min(i, i_max);
|
| 825 |
-
}
|
| 826 |
-
|
| 827 |
-
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 828 |
-
|
| 829 |
-
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
| 830 |
-
}
|
| 831 |
-
|
| 832 |
-
#pragma unroll
|
| 833 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
| 834 |
-
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
| 835 |
-
|
| 836 |
-
if (need_check) {
|
| 837 |
-
i = min(i, i_max);
|
| 838 |
-
}
|
| 839 |
-
|
| 840 |
-
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
| 841 |
-
|
| 842 |
-
const int * scales = (const int *) bxi->scales;
|
| 843 |
-
|
| 844 |
-
const int ksc = k % (WARP_SIZE/8);
|
| 845 |
-
|
| 846 |
-
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
| 847 |
-
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
| 848 |
-
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
| 849 |
-
|
| 850 |
-
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
| 851 |
-
}
|
| 852 |
-
}
|
| 853 |
-
|
| 854 |
-
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
|
| 855 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 856 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 857 |
-
GGML_UNUSED(x_qh);
|
| 858 |
-
|
| 859 |
-
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
| 860 |
-
|
| 861 |
-
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
|
| 862 |
-
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
|
| 863 |
-
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
|
| 864 |
-
}
|
| 865 |
-
|
| 866 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 867 |
-
GGML_UNUSED(x_qh);
|
| 868 |
-
|
| 869 |
-
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
| 870 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
|
| 871 |
-
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
| 872 |
-
|
| 873 |
-
*x_ql = tile_x_ql;
|
| 874 |
-
*x_dm = tile_x_dm;
|
| 875 |
-
*x_sc = tile_x_sc;
|
| 876 |
-
}
|
| 877 |
-
|
| 878 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
| 879 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 880 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 881 |
-
GGML_UNUSED(x_qh);
|
| 882 |
-
|
| 883 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 884 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 885 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 886 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 887 |
-
|
| 888 |
-
const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
| 889 |
-
const int kqsx = k % QI5_K; // == k if QK_K == 256
|
| 890 |
-
|
| 891 |
-
const block_q5_K * bx0 = (const block_q5_K *) vx;
|
| 892 |
-
|
| 893 |
-
#pragma unroll
|
| 894 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 895 |
-
int i = i0 + i_offset;
|
| 896 |
-
|
| 897 |
-
if (need_check) {
|
| 898 |
-
i = min(i, i_max);
|
| 899 |
-
}
|
| 900 |
-
|
| 901 |
-
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
|
| 902 |
-
const int ky = QR5_K*kqsx;
|
| 903 |
-
|
| 904 |
-
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 905 |
-
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
| 906 |
-
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
| 907 |
-
|
| 908 |
-
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
|
| 909 |
-
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
|
| 910 |
-
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
|
| 911 |
-
|
| 912 |
-
const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
|
| 913 |
-
const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
|
| 914 |
-
|
| 915 |
-
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
|
| 916 |
-
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
|
| 917 |
-
}
|
| 918 |
-
|
| 919 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
|
| 920 |
-
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
| 921 |
-
|
| 922 |
-
#pragma unroll
|
| 923 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
|
| 924 |
-
int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
|
| 925 |
-
|
| 926 |
-
if (need_check) {
|
| 927 |
-
i = min(i, i_max);
|
| 928 |
-
}
|
| 929 |
-
|
| 930 |
-
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 931 |
-
|
| 932 |
-
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
| 933 |
-
}
|
| 934 |
-
|
| 935 |
-
#pragma unroll
|
| 936 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
| 937 |
-
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
| 938 |
-
|
| 939 |
-
if (need_check) {
|
| 940 |
-
i = min(i, i_max);
|
| 941 |
-
}
|
| 942 |
-
|
| 943 |
-
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
| 944 |
-
|
| 945 |
-
const int * scales = (const int *) bxi->scales;
|
| 946 |
-
|
| 947 |
-
const int ksc = k % (WARP_SIZE/8);
|
| 948 |
-
|
| 949 |
-
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
| 950 |
-
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
| 951 |
-
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
| 952 |
-
|
| 953 |
-
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
| 954 |
-
}
|
| 955 |
-
}
|
| 956 |
-
|
| 957 |
-
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
|
| 958 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 959 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 960 |
-
GGML_UNUSED(x_qh);
|
| 961 |
-
|
| 962 |
-
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
| 963 |
-
|
| 964 |
-
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
|
| 965 |
-
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
|
| 966 |
-
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
|
| 967 |
-
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
|
| 968 |
-
}
|
| 969 |
-
|
| 970 |
-
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
| 971 |
-
GGML_UNUSED(x_qh);
|
| 972 |
-
|
| 973 |
-
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
| 974 |
-
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
|
| 975 |
-
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
| 976 |
-
|
| 977 |
-
*x_ql = tile_x_ql;
|
| 978 |
-
*x_dm = tile_x_dm;
|
| 979 |
-
*x_sc = tile_x_sc;
|
| 980 |
-
}
|
| 981 |
-
|
| 982 |
-
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
| 983 |
-
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 984 |
-
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
| 985 |
-
GGML_UNUSED(x_qh);
|
| 986 |
-
|
| 987 |
-
GGML_CUDA_ASSUME(i_offset >= 0);
|
| 988 |
-
GGML_CUDA_ASSUME(i_offset < nwarps);
|
| 989 |
-
GGML_CUDA_ASSUME(k >= 0);
|
| 990 |
-
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
| 991 |
-
|
| 992 |
-
const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
| 993 |
-
const int kqsx = k % QI6_K; // == k if QK_K == 256
|
| 994 |
-
|
| 995 |
-
const block_q6_K * bx0 = (const block_q6_K *) vx;
|
| 996 |
-
|
| 997 |
-
#pragma unroll
|
| 998 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 999 |
-
int i = i0 + i_offset;
|
| 1000 |
-
|
| 1001 |
-
if (need_check) {
|
| 1002 |
-
i = min(i, i_max);
|
| 1003 |
-
}
|
| 1004 |
-
|
| 1005 |
-
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
|
| 1006 |
-
const int ky = QR6_K*kqsx;
|
| 1007 |
-
|
| 1008 |
-
const int ql = get_int_from_uint8(bxi->ql, kqsx);
|
| 1009 |
-
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
| 1010 |
-
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
| 1011 |
-
|
| 1012 |
-
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
|
| 1013 |
-
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
|
| 1014 |
-
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
|
| 1015 |
-
|
| 1016 |
-
const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
|
| 1017 |
-
const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
|
| 1018 |
-
|
| 1019 |
-
x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
|
| 1020 |
-
x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
|
| 1021 |
-
}
|
| 1022 |
-
|
| 1023 |
-
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
|
| 1024 |
-
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
| 1025 |
-
float * x_dmf = (float *) x_dm;
|
| 1026 |
-
|
| 1027 |
-
#pragma unroll
|
| 1028 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
|
| 1029 |
-
int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
|
| 1030 |
-
|
| 1031 |
-
if (need_check) {
|
| 1032 |
-
i = min(i, i_max);
|
| 1033 |
-
}
|
| 1034 |
-
|
| 1035 |
-
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
| 1036 |
-
|
| 1037 |
-
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
|
| 1038 |
-
}
|
| 1039 |
-
|
| 1040 |
-
#pragma unroll
|
| 1041 |
-
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
| 1042 |
-
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
| 1043 |
-
|
| 1044 |
-
if (need_check) {
|
| 1045 |
-
i = min(i, i_max);
|
| 1046 |
-
}
|
| 1047 |
-
|
| 1048 |
-
const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
|
| 1049 |
-
|
| 1050 |
-
x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
|
| 1051 |
-
}
|
| 1052 |
-
}
|
| 1053 |
-
|
| 1054 |
-
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
|
| 1055 |
-
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 1056 |
-
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
| 1057 |
-
GGML_UNUSED(x_qh);
|
| 1058 |
-
|
| 1059 |
-
const float * x_dmf = (const float *) x_dm;
|
| 1060 |
-
const float * y_df = (const float *) y_ds;
|
| 1061 |
-
|
| 1062 |
-
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
|
| 1063 |
-
|
| 1064 |
-
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
|
| 1065 |
-
const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
|
| 1066 |
-
return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
|
| 1067 |
-
}
|
| 1068 |
-
|
| 1069 |
-
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
| 1070 |
-
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
| 1071 |
-
static __device__ __forceinline__ void mul_mat_q(
|
| 1072 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1073 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1074 |
-
|
| 1075 |
-
const block_q_t * x = (const block_q_t *) vx;
|
| 1076 |
-
const block_q8_1 * y = (const block_q8_1 *) vy;
|
| 1077 |
-
|
| 1078 |
-
const int blocks_per_row_x = ncols_x / qk;
|
| 1079 |
-
const int blocks_per_col_y = nrows_y / QK8_1;
|
| 1080 |
-
const int blocks_per_warp = WARP_SIZE / qi;
|
| 1081 |
-
|
| 1082 |
-
const int & ncols_dst = ncols_y;
|
| 1083 |
-
|
| 1084 |
-
const int row_dst_0 = blockIdx.x*mmq_y;
|
| 1085 |
-
const int & row_x_0 = row_dst_0;
|
| 1086 |
-
|
| 1087 |
-
const int col_dst_0 = blockIdx.y*mmq_x;
|
| 1088 |
-
const int & col_y_0 = col_dst_0;
|
| 1089 |
-
|
| 1090 |
-
int * tile_x_ql = nullptr;
|
| 1091 |
-
half2 * tile_x_dm = nullptr;
|
| 1092 |
-
int * tile_x_qh = nullptr;
|
| 1093 |
-
int * tile_x_sc = nullptr;
|
| 1094 |
-
|
| 1095 |
-
allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
|
| 1096 |
-
|
| 1097 |
-
__shared__ int tile_y_qs[mmq_x * WARP_SIZE];
|
| 1098 |
-
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
|
| 1099 |
-
|
| 1100 |
-
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
|
| 1101 |
-
|
| 1102 |
-
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
| 1103 |
-
|
| 1104 |
-
load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
|
| 1105 |
-
threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
|
| 1106 |
-
|
| 1107 |
-
#pragma unroll
|
| 1108 |
-
for (int ir = 0; ir < qr; ++ir) {
|
| 1109 |
-
const int kqs = ir*WARP_SIZE + threadIdx.x;
|
| 1110 |
-
const int kbxd = kqs / QI8_1;
|
| 1111 |
-
|
| 1112 |
-
#pragma unroll
|
| 1113 |
-
for (int i = 0; i < mmq_x; i += nwarps) {
|
| 1114 |
-
const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
|
| 1115 |
-
|
| 1116 |
-
const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
|
| 1117 |
-
|
| 1118 |
-
const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
|
| 1119 |
-
tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
|
| 1120 |
-
}
|
| 1121 |
-
|
| 1122 |
-
#pragma unroll
|
| 1123 |
-
for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
|
| 1124 |
-
const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
|
| 1125 |
-
const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
|
| 1126 |
-
const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
|
| 1127 |
-
|
| 1128 |
-
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
|
| 1129 |
-
const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
|
| 1130 |
-
half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
|
| 1131 |
-
if (need_sum) {
|
| 1132 |
-
*dsi_dst = *dsi_src;
|
| 1133 |
-
} else {
|
| 1134 |
-
float * dfi_dst = (float *) dsi_dst;
|
| 1135 |
-
*dfi_dst = __low2float(*dsi_src);
|
| 1136 |
-
}
|
| 1137 |
-
}
|
| 1138 |
-
|
| 1139 |
-
__syncthreads();
|
| 1140 |
-
|
| 1141 |
-
// #pragma unroll // unrolling this loop causes too much register pressure
|
| 1142 |
-
for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
|
| 1143 |
-
#pragma unroll
|
| 1144 |
-
for (int j = 0; j < mmq_x; j += nwarps) {
|
| 1145 |
-
#pragma unroll
|
| 1146 |
-
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
| 1147 |
-
sum[i/WARP_SIZE][j/nwarps] += vec_dot(
|
| 1148 |
-
tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
|
| 1149 |
-
threadIdx.x + i, threadIdx.y + j, k);
|
| 1150 |
-
}
|
| 1151 |
-
}
|
| 1152 |
-
}
|
| 1153 |
-
|
| 1154 |
-
__syncthreads();
|
| 1155 |
-
}
|
| 1156 |
-
}
|
| 1157 |
-
|
| 1158 |
-
#pragma unroll
|
| 1159 |
-
for (int j = 0; j < mmq_x; j += nwarps) {
|
| 1160 |
-
const int col_dst = col_dst_0 + j + threadIdx.y;
|
| 1161 |
-
|
| 1162 |
-
if (col_dst >= ncols_dst) {
|
| 1163 |
-
return;
|
| 1164 |
-
}
|
| 1165 |
-
|
| 1166 |
-
#pragma unroll
|
| 1167 |
-
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
| 1168 |
-
const int row_dst = row_dst_0 + threadIdx.x + i;
|
| 1169 |
-
|
| 1170 |
-
if (row_dst >= nrows_dst) {
|
| 1171 |
-
continue;
|
| 1172 |
-
}
|
| 1173 |
-
|
| 1174 |
-
dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
|
| 1175 |
-
}
|
| 1176 |
-
}
|
| 1177 |
-
}
|
| 1178 |
-
|
| 1179 |
-
static constexpr __device__ mmq_arch_config_t get_arch_config_device(mmq_config_t mmq_config) {
|
| 1180 |
-
|
| 1181 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1182 |
-
|
| 1183 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1184 |
-
return mmq_config.rdna2;
|
| 1185 |
-
#else
|
| 1186 |
-
return mmq_config.rdna1;
|
| 1187 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1188 |
-
|
| 1189 |
-
#else
|
| 1190 |
-
|
| 1191 |
-
#if __CUDA_ARCH__ >= CC_VOLTA
|
| 1192 |
-
return mmq_config.ampere;
|
| 1193 |
-
#else
|
| 1194 |
-
return mmq_config.pascal;
|
| 1195 |
-
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
| 1196 |
-
|
| 1197 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1198 |
-
}
|
| 1199 |
-
|
| 1200 |
-
template <bool need_check> static __global__ void
|
| 1201 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1202 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1203 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_0.rdna2.nwarps, 2)
|
| 1204 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1205 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1206 |
-
mul_mat_q4_0(
|
| 1207 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1208 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1209 |
-
|
| 1210 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1211 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_0);
|
| 1212 |
-
|
| 1213 |
-
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_0<arch_config.y>,
|
| 1214 |
-
load_tiles_q4_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
|
| 1215 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1216 |
-
#else
|
| 1217 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1218 |
-
GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat);
|
| 1219 |
-
NO_DEVICE_CODE;
|
| 1220 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1221 |
-
}
|
| 1222 |
-
|
| 1223 |
-
template <bool need_check> static __global__ void
|
| 1224 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1225 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1226 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.rdna2.nwarps, 2)
|
| 1227 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1228 |
-
#elif __CUDA_ARCH__ < CC_VOLTA
|
| 1229 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.pascal.nwarps, 2)
|
| 1230 |
-
#endif // __CUDA_ARCH__ < CC_VOLTA
|
| 1231 |
-
mul_mat_q4_1(
|
| 1232 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1233 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1234 |
-
|
| 1235 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1236 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_1);
|
| 1237 |
-
|
| 1238 |
-
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_1<arch_config.y>,
|
| 1239 |
-
load_tiles_q4_1<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
|
| 1240 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1241 |
-
#else
|
| 1242 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1243 |
-
GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat);
|
| 1244 |
-
NO_DEVICE_CODE;
|
| 1245 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1246 |
-
}
|
| 1247 |
-
|
| 1248 |
-
template <bool need_check> static __global__ void
|
| 1249 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1250 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1251 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_0.rdna2.nwarps, 2)
|
| 1252 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1253 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1254 |
-
mul_mat_q5_0(
|
| 1255 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1256 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1257 |
-
|
| 1258 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1259 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_0);
|
| 1260 |
-
|
| 1261 |
-
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_0<arch_config.y>,
|
| 1262 |
-
load_tiles_q5_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
|
| 1263 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1264 |
-
#else
|
| 1265 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1266 |
-
GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat);
|
| 1267 |
-
NO_DEVICE_CODE;
|
| 1268 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1269 |
-
}
|
| 1270 |
-
|
| 1271 |
-
template <bool need_check> static __global__ void
|
| 1272 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1273 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1274 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_1.rdna2.nwarps, 2)
|
| 1275 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1276 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1277 |
-
mul_mat_q5_1(
|
| 1278 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1279 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1280 |
-
|
| 1281 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1282 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_1);
|
| 1283 |
-
|
| 1284 |
-
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_1<arch_config.y>,
|
| 1285 |
-
load_tiles_q5_1<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
|
| 1286 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1287 |
-
#else
|
| 1288 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1289 |
-
GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat);
|
| 1290 |
-
NO_DEVICE_CODE;
|
| 1291 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1292 |
-
}
|
| 1293 |
-
|
| 1294 |
-
template <bool need_check> static __global__ void
|
| 1295 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1296 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1297 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q8_0.rdna2.nwarps, 2)
|
| 1298 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1299 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1300 |
-
mul_mat_q8_0(
|
| 1301 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1302 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1303 |
-
|
| 1304 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1305 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q8_0);
|
| 1306 |
-
|
| 1307 |
-
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q8_0<arch_config.y>,
|
| 1308 |
-
load_tiles_q8_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
|
| 1309 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1310 |
-
#else
|
| 1311 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1312 |
-
GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat);
|
| 1313 |
-
NO_DEVICE_CODE;
|
| 1314 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1315 |
-
}
|
| 1316 |
-
|
| 1317 |
-
template <bool need_check> static __global__ void
|
| 1318 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1319 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1320 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q2_K.rdna2.nwarps, 2)
|
| 1321 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1322 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1323 |
-
mul_mat_q2_K(
|
| 1324 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1325 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1326 |
-
|
| 1327 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1328 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q2_K);
|
| 1329 |
-
|
| 1330 |
-
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q2_K<arch_config.y>,
|
| 1331 |
-
load_tiles_q2_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
|
| 1332 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1333 |
-
#else
|
| 1334 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1335 |
-
GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat);
|
| 1336 |
-
NO_DEVICE_CODE;
|
| 1337 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1338 |
-
}
|
| 1339 |
-
|
| 1340 |
-
template <bool need_check> static __global__ void
|
| 1341 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1342 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1343 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.rdna2.nwarps, 2)
|
| 1344 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1345 |
-
#elif __CUDA_ARCH__ < CC_VOLTA
|
| 1346 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.pascal.nwarps, 2)
|
| 1347 |
-
#endif // __CUDA_ARCH__ < CC_VOLTA
|
| 1348 |
-
mul_mat_q3_K(
|
| 1349 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1350 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1351 |
-
|
| 1352 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1353 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q3_K);
|
| 1354 |
-
|
| 1355 |
-
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q3_K<arch_config.y>,
|
| 1356 |
-
load_tiles_q3_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
|
| 1357 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1358 |
-
#else
|
| 1359 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1360 |
-
GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat);
|
| 1361 |
-
NO_DEVICE_CODE;
|
| 1362 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1363 |
-
}
|
| 1364 |
-
|
| 1365 |
-
template <bool need_check> static __global__ void
|
| 1366 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1367 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1368 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.rdna2.nwarps, 2)
|
| 1369 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1370 |
-
#elif __CUDA_ARCH__ < CC_VOLTA
|
| 1371 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2)
|
| 1372 |
-
#endif // __CUDA_ARCH__ < CC_VOLTA
|
| 1373 |
-
mul_mat_q4_K(
|
| 1374 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1375 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1376 |
-
|
| 1377 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1378 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_K);
|
| 1379 |
-
|
| 1380 |
-
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_K<arch_config.y>,
|
| 1381 |
-
load_tiles_q4_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
|
| 1382 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1383 |
-
#else
|
| 1384 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1385 |
-
GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat);
|
| 1386 |
-
NO_DEVICE_CODE;
|
| 1387 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1388 |
-
}
|
| 1389 |
-
|
| 1390 |
-
template <bool need_check> static __global__ void
|
| 1391 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1392 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1393 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_K.rdna2.nwarps, 2)
|
| 1394 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1395 |
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1396 |
-
mul_mat_q5_K(
|
| 1397 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1398 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1399 |
-
|
| 1400 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1401 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_K);
|
| 1402 |
-
|
| 1403 |
-
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_K<arch_config.y>,
|
| 1404 |
-
load_tiles_q5_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
|
| 1405 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1406 |
-
#else
|
| 1407 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1408 |
-
GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat);
|
| 1409 |
-
NO_DEVICE_CODE;
|
| 1410 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1411 |
-
}
|
| 1412 |
-
|
| 1413 |
-
template <bool need_check> static __global__ void
|
| 1414 |
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1415 |
-
#if defined(RDNA3) || defined(RDNA2)
|
| 1416 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q6_K.rdna2.nwarps, 2)
|
| 1417 |
-
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1418 |
-
#elif __CUDA_ARCH__ < CC_VOLTA
|
| 1419 |
-
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2)
|
| 1420 |
-
#endif // __CUDA_ARCH__ < CC_VOLTA
|
| 1421 |
-
mul_mat_q6_K(
|
| 1422 |
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 1423 |
-
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
| 1424 |
-
|
| 1425 |
-
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1426 |
-
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q6_K);
|
| 1427 |
-
|
| 1428 |
-
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q6_K<arch_config.y>,
|
| 1429 |
-
load_tiles_q6_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
|
| 1430 |
-
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
| 1431 |
-
#else
|
| 1432 |
-
GGML_UNUSED(get_arch_config_device);
|
| 1433 |
-
GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat);
|
| 1434 |
-
NO_DEVICE_CODE;
|
| 1435 |
-
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
| 1436 |
-
}
|
| 1437 |
-
|
| 1438 |
-
#define MMQ_SWITCH_CASE(type_suffix) \
|
| 1439 |
-
case GGML_TYPE_Q##type_suffix: if (row_diff % arch_config.y == 0) { \
|
| 1440 |
-
const bool need_check = false; \
|
| 1441 |
-
mul_mat_q##type_suffix<need_check><<<block_nums, block_dims, 0, stream>>> \
|
| 1442 |
-
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \
|
| 1443 |
-
} else { \
|
| 1444 |
-
const bool need_check = true; \
|
| 1445 |
-
mul_mat_q##type_suffix<need_check><<<block_nums, block_dims, 0, stream>>> \
|
| 1446 |
-
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \
|
| 1447 |
-
} break; \
|
| 1448 |
|
| 1449 |
void ggml_cuda_op_mul_mat_q(
|
| 1450 |
ggml_backend_cuda_context & ctx,
|
|
@@ -1454,12 +8,15 @@ void ggml_cuda_op_mul_mat_q(
|
|
| 1454 |
|
| 1455 |
const int64_t ne00 = src0->ne[0];
|
| 1456 |
|
|
|
|
|
|
|
| 1457 |
const int64_t ne10 = src1->ne[0];
|
| 1458 |
GGML_ASSERT(ne10 % QK8_1 == 0);
|
| 1459 |
|
| 1460 |
const int64_t ne0 = dst->ne[0];
|
| 1461 |
|
| 1462 |
const int64_t row_diff = row_high - row_low;
|
|
|
|
| 1463 |
|
| 1464 |
int id = ggml_cuda_get_device();
|
| 1465 |
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
|
@@ -1468,73 +25,39 @@ void ggml_cuda_op_mul_mat_q(
|
|
| 1468 |
// nrows_dst == nrows of the matrix that the kernel writes into
|
| 1469 |
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
| 1470 |
|
| 1471 |
-
|
| 1472 |
|
| 1473 |
switch (src0->type) {
|
| 1474 |
case GGML_TYPE_Q4_0:
|
| 1475 |
-
|
| 1476 |
break;
|
| 1477 |
case GGML_TYPE_Q4_1:
|
| 1478 |
-
|
| 1479 |
break;
|
| 1480 |
case GGML_TYPE_Q5_0:
|
| 1481 |
-
|
| 1482 |
break;
|
| 1483 |
case GGML_TYPE_Q5_1:
|
| 1484 |
-
|
| 1485 |
break;
|
| 1486 |
case GGML_TYPE_Q8_0:
|
| 1487 |
-
|
| 1488 |
break;
|
| 1489 |
case GGML_TYPE_Q2_K:
|
| 1490 |
-
|
| 1491 |
break;
|
| 1492 |
case GGML_TYPE_Q3_K:
|
| 1493 |
-
|
| 1494 |
break;
|
| 1495 |
case GGML_TYPE_Q4_K:
|
| 1496 |
-
|
| 1497 |
break;
|
| 1498 |
case GGML_TYPE_Q5_K:
|
| 1499 |
-
|
| 1500 |
break;
|
| 1501 |
case GGML_TYPE_Q6_K:
|
| 1502 |
-
|
| 1503 |
-
break;
|
| 1504 |
-
default:
|
| 1505 |
-
GGML_ASSERT(false);
|
| 1506 |
break;
|
| 1507 |
-
}
|
| 1508 |
-
|
| 1509 |
-
mmq_arch_config_t arch_config;
|
| 1510 |
-
if (compute_capability >= CC_RDNA2) {
|
| 1511 |
-
arch_config = mmq_config.rdna2;
|
| 1512 |
-
} else if (compute_capability >= CC_OFFSET_AMD) {
|
| 1513 |
-
arch_config = mmq_config.rdna1;
|
| 1514 |
-
} else if (compute_capability >= CC_VOLTA) {
|
| 1515 |
-
arch_config = mmq_config.ampere;
|
| 1516 |
-
} else if (compute_capability >= MIN_CC_DP4A) {
|
| 1517 |
-
arch_config = mmq_config.pascal;
|
| 1518 |
-
} else {
|
| 1519 |
-
GGML_ASSERT(false);
|
| 1520 |
-
}
|
| 1521 |
-
|
| 1522 |
-
const int block_num_x = (row_diff + arch_config.y - 1) / arch_config.y;
|
| 1523 |
-
const int block_num_y = (src1_ncols + arch_config.x - 1) / arch_config.x;
|
| 1524 |
-
const dim3 block_nums(block_num_x, block_num_y, 1);
|
| 1525 |
-
const dim3 block_dims(WARP_SIZE, arch_config.nwarps, 1);
|
| 1526 |
-
|
| 1527 |
-
switch (src0->type) {
|
| 1528 |
-
MMQ_SWITCH_CASE(4_0)
|
| 1529 |
-
MMQ_SWITCH_CASE(4_1)
|
| 1530 |
-
MMQ_SWITCH_CASE(5_0)
|
| 1531 |
-
MMQ_SWITCH_CASE(5_1)
|
| 1532 |
-
MMQ_SWITCH_CASE(8_0)
|
| 1533 |
-
MMQ_SWITCH_CASE(2_K)
|
| 1534 |
-
MMQ_SWITCH_CASE(3_K)
|
| 1535 |
-
MMQ_SWITCH_CASE(4_K)
|
| 1536 |
-
MMQ_SWITCH_CASE(5_K)
|
| 1537 |
-
MMQ_SWITCH_CASE(6_K)
|
| 1538 |
default:
|
| 1539 |
GGML_ASSERT(false);
|
| 1540 |
break;
|
|
|
|
| 1 |
#include "mmq.cuh"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
void ggml_cuda_op_mul_mat_q(
|
| 4 |
ggml_backend_cuda_context & ctx,
|
|
|
|
| 8 |
|
| 9 |
const int64_t ne00 = src0->ne[0];
|
| 10 |
|
| 11 |
+
const int64_t nb01 = src0->nb[1];
|
| 12 |
+
|
| 13 |
const int64_t ne10 = src1->ne[0];
|
| 14 |
GGML_ASSERT(ne10 % QK8_1 == 0);
|
| 15 |
|
| 16 |
const int64_t ne0 = dst->ne[0];
|
| 17 |
|
| 18 |
const int64_t row_diff = row_high - row_low;
|
| 19 |
+
const int64_t stride00 = nb01 / ggml_type_size(src0->type);
|
| 20 |
|
| 21 |
int id = ggml_cuda_get_device();
|
| 22 |
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
|
|
|
| 25 |
// nrows_dst == nrows of the matrix that the kernel writes into
|
| 26 |
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
| 27 |
|
| 28 |
+
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, nrows_dst};
|
| 29 |
|
| 30 |
switch (src0->type) {
|
| 31 |
case GGML_TYPE_Q4_0:
|
| 32 |
+
mul_mat_q_case<GGML_TYPE_Q4_0>(args, stream);
|
| 33 |
break;
|
| 34 |
case GGML_TYPE_Q4_1:
|
| 35 |
+
mul_mat_q_case<GGML_TYPE_Q4_1>(args, stream);
|
| 36 |
break;
|
| 37 |
case GGML_TYPE_Q5_0:
|
| 38 |
+
mul_mat_q_case<GGML_TYPE_Q5_0>(args, stream);
|
| 39 |
break;
|
| 40 |
case GGML_TYPE_Q5_1:
|
| 41 |
+
mul_mat_q_case<GGML_TYPE_Q5_1>(args, stream);
|
| 42 |
break;
|
| 43 |
case GGML_TYPE_Q8_0:
|
| 44 |
+
mul_mat_q_case<GGML_TYPE_Q8_0>(args, stream);
|
| 45 |
break;
|
| 46 |
case GGML_TYPE_Q2_K:
|
| 47 |
+
mul_mat_q_case<GGML_TYPE_Q2_K>(args, stream);
|
| 48 |
break;
|
| 49 |
case GGML_TYPE_Q3_K:
|
| 50 |
+
mul_mat_q_case<GGML_TYPE_Q3_K>(args, stream);
|
| 51 |
break;
|
| 52 |
case GGML_TYPE_Q4_K:
|
| 53 |
+
mul_mat_q_case<GGML_TYPE_Q4_K>(args, stream);
|
| 54 |
break;
|
| 55 |
case GGML_TYPE_Q5_K:
|
| 56 |
+
mul_mat_q_case<GGML_TYPE_Q5_K>(args, stream);
|
| 57 |
break;
|
| 58 |
case GGML_TYPE_Q6_K:
|
| 59 |
+
mul_mat_q_case<GGML_TYPE_Q6_K>(args, stream);
|
|
|
|
|
|
|
|
|
|
| 60 |
break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
default:
|
| 62 |
GGML_ASSERT(false);
|
| 63 |
break;
|
ggml-cuda/mmq.cuh
CHANGED
|
@@ -1,4 +1,1304 @@
|
|
| 1 |
#include "common.cuh"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
void ggml_cuda_op_mul_mat_q(
|
| 4 |
ggml_backend_cuda_context & ctx,
|
|
|
|
| 1 |
#include "common.cuh"
|
| 2 |
+
#include "vecdotq.cuh"
|
| 3 |
+
|
| 4 |
+
#include <climits>
|
| 5 |
+
#include <cstdint>
|
| 6 |
+
|
| 7 |
+
typedef void (*load_tiles_mmq_t)(
|
| 8 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 9 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride);
|
| 10 |
+
typedef void (*vec_dot_mmq_t)(
|
| 11 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 12 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, float * __restrict__ sum, const int & k0);
|
| 13 |
+
|
| 14 |
+
struct tile_x_sizes {
|
| 15 |
+
int ql;
|
| 16 |
+
int dm;
|
| 17 |
+
int qh;
|
| 18 |
+
int sc;
|
| 19 |
+
};
|
| 20 |
+
|
| 21 |
+
// get_mmq_x_max_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row
|
| 22 |
+
|
| 23 |
+
static constexpr __device__ int get_mmq_x_max_device() {
|
| 24 |
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 25 |
+
return 64;
|
| 26 |
+
#else
|
| 27 |
+
#if __CUDA_ARCH__ >= CC_VOLTA
|
| 28 |
+
#ifdef CUDA_USE_TENSOR_CORES
|
| 29 |
+
return MMQ_MAX_BATCH_SIZE;
|
| 30 |
+
#else
|
| 31 |
+
return 128;
|
| 32 |
+
#endif // CUDA_USE_TENSOR_CORES
|
| 33 |
+
#else
|
| 34 |
+
return 64;
|
| 35 |
+
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
| 36 |
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
// get_mmq_y_host is in common.cuh so that it can be used to determine the correct way to round for --split-mode row
|
| 40 |
+
|
| 41 |
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 42 |
+
static constexpr __device__ int get_mmq_y_device(int mmq_x) {
|
| 43 |
+
return mmq_x >= 32 ? 128 : 64;
|
| 44 |
+
}
|
| 45 |
+
#else
|
| 46 |
+
#if __CUDA_ARCH__ >= CC_VOLTA
|
| 47 |
+
static constexpr __device__ int get_mmq_y_device(int mmq_x) {
|
| 48 |
+
return mmq_x >= 32 ? 128 : 64;
|
| 49 |
+
}
|
| 50 |
+
#else
|
| 51 |
+
static constexpr __device__ int get_mmq_y_device(int /*mmq_x*/) {
|
| 52 |
+
return 64;
|
| 53 |
+
}
|
| 54 |
+
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
| 55 |
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 56 |
+
|
| 57 |
+
#define TILE_X_SIZES_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0, 0}
|
| 58 |
+
#define TILE_X_SIZES_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0, 0}
|
| 59 |
+
#define TILE_X_SIZES_Q5_0 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_0 + mmq_y/QI5_0, 0, 0}
|
| 60 |
+
#define TILE_X_SIZES_Q5_1 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_1 + mmq_y/QI5_1, 0, 0}
|
| 61 |
+
#define TILE_X_SIZES_Q8_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI8_0 + mmq_y/QI8_0, 0, 0}
|
| 62 |
+
#define TILE_X_SIZES_Q2_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI2_K + mmq_y/QI2_K, 0, mmq_y*WARP_SIZE/4 + mmq_y/4}
|
| 63 |
+
#define TILE_X_SIZES_Q3_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI3_K + mmq_y/QI3_K, mmq_y*WARP_SIZE/2 + mmq_y/2, mmq_y*WARP_SIZE/4 + mmq_y/4}
|
| 64 |
+
#define TILE_X_SIZES_Q4_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_K + mmq_y/QI4_K, 0, mmq_y*WARP_SIZE/8 + mmq_y/8}
|
| 65 |
+
#define TILE_X_SIZES_Q5_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_K + mmq_y/QI5_K, 0, mmq_y*WARP_SIZE/8 + mmq_y/8}
|
| 66 |
+
#define TILE_X_SIZES_Q6_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI6_K + mmq_y/QI6_K, 0, mmq_y*WARP_SIZE/8 + mmq_y/8}
|
| 67 |
+
|
| 68 |
+
#define GET_TILE_X_SIZES_BODY \
|
| 69 |
+
return type == GGML_TYPE_Q4_0 ? TILE_X_SIZES_Q4_0 : \
|
| 70 |
+
type == GGML_TYPE_Q4_1 ? TILE_X_SIZES_Q4_1 : \
|
| 71 |
+
type == GGML_TYPE_Q5_0 ? TILE_X_SIZES_Q5_0 : \
|
| 72 |
+
type == GGML_TYPE_Q5_1 ? TILE_X_SIZES_Q5_1 : \
|
| 73 |
+
type == GGML_TYPE_Q8_0 ? TILE_X_SIZES_Q8_0 : \
|
| 74 |
+
type == GGML_TYPE_Q2_K ? TILE_X_SIZES_Q2_K : \
|
| 75 |
+
type == GGML_TYPE_Q3_K ? TILE_X_SIZES_Q3_K : \
|
| 76 |
+
type == GGML_TYPE_Q4_K ? TILE_X_SIZES_Q4_K : \
|
| 77 |
+
type == GGML_TYPE_Q5_K ? TILE_X_SIZES_Q5_K : \
|
| 78 |
+
type == GGML_TYPE_Q6_K ? TILE_X_SIZES_Q6_K : \
|
| 79 |
+
tile_x_sizes{0, 0, 0, 0}
|
| 80 |
+
|
| 81 |
+
static tile_x_sizes get_tile_x_sizes_host(const ggml_type type, const int mmq_y) {
|
| 82 |
+
GET_TILE_X_SIZES_BODY;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
template <int mmq_y>
|
| 86 |
+
static constexpr __device__ tile_x_sizes get_tile_x_sizes_device(ggml_type type) {
|
| 87 |
+
GET_TILE_X_SIZES_BODY;
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
// ------------------------------------------------------------
|
| 91 |
+
|
| 92 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
| 93 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 94 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 95 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 96 |
+
|
| 97 |
+
const int kbx = threadIdx.x / QI4_0;
|
| 98 |
+
const int kqsx = threadIdx.x % QI4_0;
|
| 99 |
+
|
| 100 |
+
float * x_dmf = (float *) x_dm;
|
| 101 |
+
|
| 102 |
+
#pragma unroll
|
| 103 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 104 |
+
int i = i0 + threadIdx.y;
|
| 105 |
+
|
| 106 |
+
if (need_check) {
|
| 107 |
+
i = min(i, i_max);
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx;
|
| 111 |
+
|
| 112 |
+
x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8(bxi->qs, kqsx);
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
|
| 116 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 117 |
+
|
| 118 |
+
#pragma unroll
|
| 119 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
|
| 120 |
+
int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row;
|
| 121 |
+
|
| 122 |
+
if (need_check) {
|
| 123 |
+
i = min(i, i_max);
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd;
|
| 127 |
+
|
| 128 |
+
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
|
| 129 |
+
}
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 133 |
+
static __device__ __forceinline__ void vec_dot_q4_0_q8_1_mul_mat(
|
| 134 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 135 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 136 |
+
|
| 137 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 138 |
+
|
| 139 |
+
#pragma unroll
|
| 140 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 141 |
+
const int j = j0 + threadIdx.y;
|
| 142 |
+
|
| 143 |
+
#pragma unroll
|
| 144 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 145 |
+
const int i = i0 + threadIdx.x;
|
| 146 |
+
|
| 147 |
+
const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2));
|
| 148 |
+
const float * x_dmf = (const float *) x_dm;
|
| 149 |
+
|
| 150 |
+
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
| 151 |
+
|
| 152 |
+
#pragma unroll
|
| 153 |
+
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
|
| 154 |
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 155 |
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
|
| 159 |
+
(&x_ql[i * (WARP_SIZE + 1) + k0], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k0/QI4_0],
|
| 160 |
+
y_ds[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 161 |
+
}
|
| 162 |
+
}
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
| 166 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 167 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 168 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 169 |
+
|
| 170 |
+
const int kbx = threadIdx.x / QI4_1;
|
| 171 |
+
const int kqsx = threadIdx.x % QI4_1;
|
| 172 |
+
|
| 173 |
+
#pragma unroll
|
| 174 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 175 |
+
int i = i0 + threadIdx.y;
|
| 176 |
+
|
| 177 |
+
if (need_check) {
|
| 178 |
+
i = min(i, i_max);
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx;
|
| 182 |
+
|
| 183 |
+
x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
|
| 187 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 188 |
+
|
| 189 |
+
#pragma unroll
|
| 190 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
|
| 191 |
+
int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row;
|
| 192 |
+
|
| 193 |
+
if (need_check) {
|
| 194 |
+
i = min(i, i_max);
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd;
|
| 198 |
+
|
| 199 |
+
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
|
| 200 |
+
}
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 204 |
+
static __device__ __forceinline__ void vec_dot_q4_1_q8_1_mul_mat(
|
| 205 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 206 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 207 |
+
|
| 208 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 209 |
+
|
| 210 |
+
#pragma unroll
|
| 211 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 212 |
+
const int j = j0 + threadIdx.y;
|
| 213 |
+
|
| 214 |
+
#pragma unroll
|
| 215 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 216 |
+
const int i = i0 + threadIdx.x;
|
| 217 |
+
|
| 218 |
+
const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2));
|
| 219 |
+
|
| 220 |
+
int u[2*VDR_Q4_1_Q8_1_MMQ];
|
| 221 |
+
|
| 222 |
+
#pragma unroll
|
| 223 |
+
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
|
| 224 |
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 225 |
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
|
| 229 |
+
(&x_ql[i * (WARP_SIZE + 1) + k0], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k0/QI4_1],
|
| 230 |
+
y_ds[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 231 |
+
}
|
| 232 |
+
}
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
| 236 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 237 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 238 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 239 |
+
|
| 240 |
+
const int kbx = threadIdx.x / QI5_0;
|
| 241 |
+
const int kqsx = threadIdx.x % QI5_0;
|
| 242 |
+
|
| 243 |
+
#pragma unroll
|
| 244 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 245 |
+
int i = i0 + threadIdx.y;
|
| 246 |
+
|
| 247 |
+
if (need_check) {
|
| 248 |
+
i = min(i, i_max);
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx;
|
| 252 |
+
|
| 253 |
+
const int ql = get_int_from_uint8(bxi->qs, kqsx);
|
| 254 |
+
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0));
|
| 255 |
+
|
| 256 |
+
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
| 257 |
+
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
| 258 |
+
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
| 259 |
+
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
| 260 |
+
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
| 261 |
+
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
|
| 262 |
+
|
| 263 |
+
x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+0] = qs0;
|
| 264 |
+
|
| 265 |
+
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
| 266 |
+
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
| 267 |
+
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
| 268 |
+
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
| 269 |
+
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
| 270 |
+
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
|
| 271 |
+
|
| 272 |
+
x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+1] = qs1;
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
|
| 276 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 277 |
+
float * x_dmf = (float *) x_dm;
|
| 278 |
+
|
| 279 |
+
#pragma unroll
|
| 280 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
|
| 281 |
+
int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row;
|
| 282 |
+
|
| 283 |
+
if (need_check) {
|
| 284 |
+
i = min(i, i_max);
|
| 285 |
+
}
|
| 286 |
+
|
| 287 |
+
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd;
|
| 288 |
+
|
| 289 |
+
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
|
| 290 |
+
}
|
| 291 |
+
}
|
| 292 |
+
|
| 293 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 294 |
+
static __device__ __forceinline__ void vec_dot_q5_0_q8_1_mul_mat(
|
| 295 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 296 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 297 |
+
|
| 298 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 299 |
+
|
| 300 |
+
#pragma unroll
|
| 301 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 302 |
+
const int j = j0 + threadIdx.y;
|
| 303 |
+
|
| 304 |
+
#pragma unroll
|
| 305 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 306 |
+
const int i = i0 + threadIdx.x;
|
| 307 |
+
|
| 308 |
+
const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2));
|
| 309 |
+
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k0/QI5_0;
|
| 310 |
+
const float * x_dmf = (const float *) x_dm;
|
| 311 |
+
const float * y_df = (const float *) y_ds;
|
| 312 |
+
|
| 313 |
+
int u[2*VDR_Q5_0_Q8_1_MMQ];
|
| 314 |
+
|
| 315 |
+
#pragma unroll
|
| 316 |
+
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
|
| 317 |
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 318 |
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl<float, QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
| 322 |
+
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k0], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 323 |
+
}
|
| 324 |
+
}
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
| 329 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 330 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 331 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 332 |
+
|
| 333 |
+
const int kbx = threadIdx.x / QI5_1;
|
| 334 |
+
const int kqsx = threadIdx.x % QI5_1;
|
| 335 |
+
|
| 336 |
+
#pragma unroll
|
| 337 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 338 |
+
int i = i0 + threadIdx.y;
|
| 339 |
+
|
| 340 |
+
if (need_check) {
|
| 341 |
+
i = min(i, i_max);
|
| 342 |
+
}
|
| 343 |
+
|
| 344 |
+
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx;
|
| 345 |
+
|
| 346 |
+
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 347 |
+
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1));
|
| 348 |
+
|
| 349 |
+
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
| 350 |
+
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
| 351 |
+
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
| 352 |
+
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
| 353 |
+
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
| 354 |
+
|
| 355 |
+
x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+0] = qs0;
|
| 356 |
+
|
| 357 |
+
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
| 358 |
+
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
| 359 |
+
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
| 360 |
+
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
| 361 |
+
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
| 362 |
+
|
| 363 |
+
x_ql[i * (2*WARP_SIZE + 1) + 2*threadIdx.x+1] = qs1;
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
|
| 367 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 368 |
+
|
| 369 |
+
#pragma unroll
|
| 370 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
|
| 371 |
+
int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row;
|
| 372 |
+
|
| 373 |
+
if (need_check) {
|
| 374 |
+
i = min(i, i_max);
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd;
|
| 378 |
+
|
| 379 |
+
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
|
| 380 |
+
}
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 384 |
+
static __device__ __forceinline__ void vec_dot_q5_1_q8_1_mul_mat(
|
| 385 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 386 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 387 |
+
|
| 388 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 389 |
+
|
| 390 |
+
#pragma unroll
|
| 391 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 392 |
+
const int j = j0 + threadIdx.y;
|
| 393 |
+
|
| 394 |
+
#pragma unroll
|
| 395 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 396 |
+
const int i = i0 + threadIdx.x;
|
| 397 |
+
|
| 398 |
+
const int kyqs = k0 % (QI8_1/2) + QI8_1 * (k0 / (QI8_1/2));
|
| 399 |
+
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k0/QI5_1;
|
| 400 |
+
|
| 401 |
+
int u[2*VDR_Q5_1_Q8_1_MMQ];
|
| 402 |
+
|
| 403 |
+
#pragma unroll
|
| 404 |
+
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
|
| 405 |
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
| 406 |
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
|
| 410 |
+
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k0], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k0/QI8_1) % (WARP_SIZE/QI8_1)]);
|
| 411 |
+
}
|
| 412 |
+
}
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
| 416 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 417 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 418 |
+
|
| 419 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 420 |
+
|
| 421 |
+
const int kbx = threadIdx.x / QI8_0;
|
| 422 |
+
const int kqsx = threadIdx.x % QI8_0;
|
| 423 |
+
float * x_dmf = (float *) x_dm;
|
| 424 |
+
|
| 425 |
+
#pragma unroll
|
| 426 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 427 |
+
int i = i0 + threadIdx.y;
|
| 428 |
+
|
| 429 |
+
if (need_check) {
|
| 430 |
+
i = min(i, i_max);
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx;
|
| 434 |
+
|
| 435 |
+
x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_int8(bxi->qs, kqsx);
|
| 436 |
+
}
|
| 437 |
+
|
| 438 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
|
| 439 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 440 |
+
|
| 441 |
+
#pragma unroll
|
| 442 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
|
| 443 |
+
int i = i0 + threadIdx.y * QI8_0 + threadIdx.x / blocks_per_tile_x_row;
|
| 444 |
+
|
| 445 |
+
if (need_check) {
|
| 446 |
+
i = min(i, i_max);
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd;
|
| 450 |
+
|
| 451 |
+
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
|
| 452 |
+
}
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 456 |
+
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mul_mat(
|
| 457 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 458 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 459 |
+
|
| 460 |
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
| 461 |
+
|
| 462 |
+
#pragma unroll
|
| 463 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 464 |
+
const int j = j0 + threadIdx.y;
|
| 465 |
+
|
| 466 |
+
#pragma unroll
|
| 467 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 468 |
+
const int i = i0 + threadIdx.x;
|
| 469 |
+
|
| 470 |
+
const float * x_dmf = (const float *) x_dm;
|
| 471 |
+
const float * y_df = (const float *) y_ds;
|
| 472 |
+
|
| 473 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
|
| 474 |
+
(&x_ql[i * (WARP_SIZE + 1) + k0], &y_qs[j * WARP_SIZE + k0], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k0/QI8_0],
|
| 475 |
+
y_df[j * (WARP_SIZE/QI8_1) + k0/QI8_1]);
|
| 476 |
+
}
|
| 477 |
+
}
|
| 478 |
+
}
|
| 479 |
+
|
| 480 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
| 481 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 482 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 483 |
+
GGML_UNUSED(x_qh);
|
| 484 |
+
|
| 485 |
+
const int kbx = threadIdx.x / QI2_K;
|
| 486 |
+
const int kqsx = threadIdx.x % QI2_K;
|
| 487 |
+
|
| 488 |
+
#pragma unroll
|
| 489 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 490 |
+
int i = i0 + threadIdx.y;
|
| 491 |
+
|
| 492 |
+
if (need_check) {
|
| 493 |
+
i = min(i, i_max);
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + kbx;
|
| 497 |
+
|
| 498 |
+
x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
|
| 502 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 503 |
+
|
| 504 |
+
#pragma unroll
|
| 505 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
|
| 506 |
+
int i = (i0 + threadIdx.y * QI2_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
|
| 507 |
+
|
| 508 |
+
if (need_check) {
|
| 509 |
+
i = min(i, i_max);
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + kbxd;
|
| 513 |
+
|
| 514 |
+
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
|
| 515 |
+
}
|
| 516 |
+
|
| 517 |
+
#pragma unroll
|
| 518 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
| 519 |
+
int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4);
|
| 520 |
+
|
| 521 |
+
if (need_check) {
|
| 522 |
+
i = min(i, i_max);
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/4)) / (QI2_K/4);
|
| 526 |
+
|
| 527 |
+
x_sc[i * (WARP_SIZE/4) + i / 4 + threadIdx.x % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, threadIdx.x % (QI2_K/4));
|
| 528 |
+
}
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 532 |
+
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mul_mat(
|
| 533 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 534 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 535 |
+
|
| 536 |
+
GGML_UNUSED(x_qh);
|
| 537 |
+
|
| 538 |
+
#pragma unroll
|
| 539 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 540 |
+
const int j = j0 + threadIdx.y;
|
| 541 |
+
|
| 542 |
+
#pragma unroll
|
| 543 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 544 |
+
const int i = i0 + threadIdx.x;
|
| 545 |
+
|
| 546 |
+
const int kbx = k0 / QI2_K;
|
| 547 |
+
const int ky = (k0 % QI2_K) * QR2_K;
|
| 548 |
+
const float * y_df = (const float *) y_ds;
|
| 549 |
+
|
| 550 |
+
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
|
| 551 |
+
|
| 552 |
+
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
|
| 553 |
+
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
|
| 554 |
+
|
| 555 |
+
#pragma unroll
|
| 556 |
+
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
|
| 557 |
+
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
| 558 |
+
}
|
| 559 |
+
|
| 560 |
+
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
|
| 561 |
+
|
| 562 |
+
const int index_y = j * WARP_SIZE + (QR2_K*k0) % WARP_SIZE;
|
| 563 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq(
|
| 564 |
+
v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
|
| 565 |
+
}
|
| 566 |
+
}
|
| 567 |
+
}
|
| 568 |
+
|
| 569 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
|
| 570 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 571 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 572 |
+
|
| 573 |
+
const int kbx = threadIdx.x / QI3_K;
|
| 574 |
+
const int kqsx = threadIdx.x % QI3_K;
|
| 575 |
+
|
| 576 |
+
#pragma unroll
|
| 577 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 578 |
+
int i = i0 + threadIdx.y;
|
| 579 |
+
|
| 580 |
+
if (need_check) {
|
| 581 |
+
i = min(i, i_max);
|
| 582 |
+
}
|
| 583 |
+
|
| 584 |
+
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + kbx;
|
| 585 |
+
|
| 586 |
+
x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8(bxi->qs, kqsx);
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
|
| 590 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
|
| 591 |
+
float * x_dmf = (float *) x_dm;
|
| 592 |
+
|
| 593 |
+
#pragma unroll
|
| 594 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
|
| 595 |
+
int i = (i0 + threadIdx.y * QI3_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
|
| 596 |
+
|
| 597 |
+
if (need_check) {
|
| 598 |
+
i = min(i, i_max);
|
| 599 |
+
}
|
| 600 |
+
|
| 601 |
+
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + kbxd;
|
| 602 |
+
|
| 603 |
+
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
|
| 604 |
+
}
|
| 605 |
+
|
| 606 |
+
#pragma unroll
|
| 607 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
|
| 608 |
+
int i = i0 + threadIdx.y * 2 + threadIdx.x / (WARP_SIZE/2);
|
| 609 |
+
|
| 610 |
+
if (need_check) {
|
| 611 |
+
i = min(i, i_max);
|
| 612 |
+
}
|
| 613 |
+
|
| 614 |
+
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/2)) / (QI3_K/2);
|
| 615 |
+
|
| 616 |
+
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
| 617 |
+
x_qh[i * (WARP_SIZE/2) + i / 2 + threadIdx.x % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, threadIdx.x % (QI3_K/2));
|
| 618 |
+
}
|
| 619 |
+
|
| 620 |
+
#pragma unroll
|
| 621 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
| 622 |
+
int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4);
|
| 623 |
+
|
| 624 |
+
if (need_check) {
|
| 625 |
+
i = min(i, i_max);
|
| 626 |
+
}
|
| 627 |
+
|
| 628 |
+
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/4)) / (QI3_K/4);
|
| 629 |
+
|
| 630 |
+
const int ksc = threadIdx.x % (QI3_K/4);
|
| 631 |
+
|
| 632 |
+
const int ksc_low = ksc % (QI3_K/8);
|
| 633 |
+
const int shift_low = 4 * (ksc / (QI3_K/8));
|
| 634 |
+
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
|
| 635 |
+
|
| 636 |
+
const int ksc_high = QI3_K/8;
|
| 637 |
+
const int shift_high = 2 * ksc;
|
| 638 |
+
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
|
| 639 |
+
|
| 640 |
+
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
|
| 641 |
+
|
| 642 |
+
x_sc[i * (WARP_SIZE/4) + i / 4 + threadIdx.x % (WARP_SIZE/4)] = sc;
|
| 643 |
+
}
|
| 644 |
+
}
|
| 645 |
+
|
| 646 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 647 |
+
static __device__ __forceinline__ void vec_dot_q3_K_q8_1_mul_mat(
|
| 648 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 649 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 650 |
+
|
| 651 |
+
#pragma unroll
|
| 652 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 653 |
+
const int j = j0 + threadIdx.y;
|
| 654 |
+
|
| 655 |
+
#pragma unroll
|
| 656 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 657 |
+
const int i = i0 + threadIdx.x;
|
| 658 |
+
|
| 659 |
+
const int kbx = k0 / QI3_K;
|
| 660 |
+
const int ky = (k0 % QI3_K) * QR3_K;
|
| 661 |
+
const float * x_dmf = (const float *) x_dm;
|
| 662 |
+
const float * y_df = (const float *) y_ds;
|
| 663 |
+
|
| 664 |
+
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
| 665 |
+
|
| 666 |
+
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
| 667 |
+
|
| 668 |
+
#pragma unroll
|
| 669 |
+
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
|
| 670 |
+
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
|
| 671 |
+
const int shift = 2 * ((ky % 32) / 8);
|
| 672 |
+
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
| 673 |
+
|
| 674 |
+
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
|
| 675 |
+
const int vlh = (vh << 2) & 0x04040404;
|
| 676 |
+
|
| 677 |
+
v[l] = __vsubss4(vll, vlh);
|
| 678 |
+
}
|
| 679 |
+
|
| 680 |
+
const int index_y = j * WARP_SIZE + (k0*QR3_K) % WARP_SIZE;
|
| 681 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq(
|
| 682 |
+
v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
|
| 683 |
+
}
|
| 684 |
+
}
|
| 685 |
+
}
|
| 686 |
+
|
| 687 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
| 688 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 689 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 690 |
+
GGML_UNUSED(x_qh);
|
| 691 |
+
|
| 692 |
+
const int kbx = 0; // threadIdx.x / QI4_K
|
| 693 |
+
const int kqsx = threadIdx.x; // threadIdx.x % QI4_K
|
| 694 |
+
|
| 695 |
+
#pragma unroll
|
| 696 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 697 |
+
int i = i0 + threadIdx.y;
|
| 698 |
+
|
| 699 |
+
if (need_check) {
|
| 700 |
+
i = min(i, i_max);
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + kbx;
|
| 704 |
+
|
| 705 |
+
x_ql[i * (WARP_SIZE + 1) + threadIdx.x] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 706 |
+
}
|
| 707 |
+
|
| 708 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
|
| 709 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
| 710 |
+
|
| 711 |
+
#pragma unroll
|
| 712 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
|
| 713 |
+
int i = (i0 + threadIdx.y * QI4_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
|
| 714 |
+
|
| 715 |
+
if (need_check) {
|
| 716 |
+
i = min(i, i_max);
|
| 717 |
+
}
|
| 718 |
+
|
| 719 |
+
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + kbxd;
|
| 720 |
+
|
| 721 |
+
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
| 722 |
+
}
|
| 723 |
+
|
| 724 |
+
#pragma unroll
|
| 725 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
| 726 |
+
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
|
| 727 |
+
|
| 728 |
+
if (need_check) {
|
| 729 |
+
i = min(i, i_max);
|
| 730 |
+
}
|
| 731 |
+
|
| 732 |
+
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8);
|
| 733 |
+
|
| 734 |
+
const int * scales = (const int *) bxi->scales;
|
| 735 |
+
|
| 736 |
+
const int ksc = threadIdx.x % (WARP_SIZE/8);
|
| 737 |
+
|
| 738 |
+
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
| 739 |
+
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
| 740 |
+
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
| 741 |
+
|
| 742 |
+
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
| 743 |
+
}
|
| 744 |
+
}
|
| 745 |
+
|
| 746 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 747 |
+
static __device__ __forceinline__ void vec_dot_q4_K_q8_1_mul_mat(
|
| 748 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 749 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 750 |
+
|
| 751 |
+
GGML_UNUSED(x_qh);
|
| 752 |
+
|
| 753 |
+
#pragma unroll
|
| 754 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 755 |
+
const int j = j0 + threadIdx.y;
|
| 756 |
+
|
| 757 |
+
#pragma unroll
|
| 758 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 759 |
+
const int i = i0 + threadIdx.x;
|
| 760 |
+
|
| 761 |
+
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2*((k0 % 16) / 8);
|
| 762 |
+
|
| 763 |
+
const int index_y = j * WARP_SIZE + (QR4_K*k0) % WARP_SIZE;
|
| 764 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq(
|
| 765 |
+
&x_ql[i * (WARP_SIZE + 1) + k0], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
|
| 766 |
+
}
|
| 767 |
+
}
|
| 768 |
+
}
|
| 769 |
+
|
| 770 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
| 771 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 772 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 773 |
+
GGML_UNUSED(x_qh);
|
| 774 |
+
|
| 775 |
+
const int kbx = 0; // threadIdx.x / QI5_K
|
| 776 |
+
const int kqsx = threadIdx.x; // threadIdx.x % QI5_K
|
| 777 |
+
|
| 778 |
+
#pragma unroll
|
| 779 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 780 |
+
int i = i0 + threadIdx.y;
|
| 781 |
+
|
| 782 |
+
if (need_check) {
|
| 783 |
+
i = min(i, i_max);
|
| 784 |
+
}
|
| 785 |
+
|
| 786 |
+
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + kbx;
|
| 787 |
+
const int ky = QR5_K*kqsx;
|
| 788 |
+
|
| 789 |
+
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
| 790 |
+
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
| 791 |
+
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
| 792 |
+
|
| 793 |
+
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
|
| 794 |
+
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
|
| 795 |
+
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
|
| 796 |
+
|
| 797 |
+
const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0;
|
| 798 |
+
const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + (QI5_K/4);
|
| 799 |
+
|
| 800 |
+
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
|
| 801 |
+
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
|
| 802 |
+
}
|
| 803 |
+
|
| 804 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
|
| 805 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
| 806 |
+
|
| 807 |
+
#pragma unroll
|
| 808 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
|
| 809 |
+
int i = (i0 + threadIdx.y * QI5_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
|
| 810 |
+
|
| 811 |
+
if (need_check) {
|
| 812 |
+
i = min(i, i_max);
|
| 813 |
+
}
|
| 814 |
+
|
| 815 |
+
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + kbxd;
|
| 816 |
+
|
| 817 |
+
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
| 818 |
+
}
|
| 819 |
+
|
| 820 |
+
#pragma unroll
|
| 821 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
| 822 |
+
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
|
| 823 |
+
|
| 824 |
+
if (need_check) {
|
| 825 |
+
i = min(i, i_max);
|
| 826 |
+
}
|
| 827 |
+
|
| 828 |
+
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI5_K/8);
|
| 829 |
+
|
| 830 |
+
const int * scales = (const int *) bxi->scales;
|
| 831 |
+
|
| 832 |
+
const int ksc = threadIdx.x % (WARP_SIZE/8);
|
| 833 |
+
|
| 834 |
+
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
| 835 |
+
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
| 836 |
+
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
| 837 |
+
|
| 838 |
+
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
| 839 |
+
}
|
| 840 |
+
}
|
| 841 |
+
|
| 842 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 843 |
+
static __device__ __forceinline__ void vec_dot_q5_K_q8_1_mul_mat(
|
| 844 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 845 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 846 |
+
|
| 847 |
+
GGML_UNUSED(x_qh);
|
| 848 |
+
|
| 849 |
+
#pragma unroll
|
| 850 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 851 |
+
const int j = j0 + threadIdx.y;
|
| 852 |
+
|
| 853 |
+
#pragma unroll
|
| 854 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 855 |
+
const int i = i0 + threadIdx.x;
|
| 856 |
+
|
| 857 |
+
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]) + 2 * ((k0 % 16) / 8);
|
| 858 |
+
|
| 859 |
+
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k0;
|
| 860 |
+
const int index_y = j * WARP_SIZE + (QR5_K*k0) % WARP_SIZE;
|
| 861 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq(
|
| 862 |
+
&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
|
| 863 |
+
}
|
| 864 |
+
}
|
| 865 |
+
}
|
| 866 |
+
|
| 867 |
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
| 868 |
+
const char * __restrict__ x, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
| 869 |
+
int * __restrict__ x_sc, const int & kbx0, const int & i_max, const int & stride) {
|
| 870 |
+
GGML_UNUSED(x_qh);
|
| 871 |
+
|
| 872 |
+
const int kbx = 0; // threadIdx.x / QI6_K
|
| 873 |
+
const int kqsx = threadIdx.x; // threadIdx.x % QI6_K
|
| 874 |
+
|
| 875 |
+
#pragma unroll
|
| 876 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
| 877 |
+
int i = i0 + threadIdx.y;
|
| 878 |
+
|
| 879 |
+
if (need_check) {
|
| 880 |
+
i = min(i, i_max);
|
| 881 |
+
}
|
| 882 |
+
|
| 883 |
+
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbx;
|
| 884 |
+
const int ky = QR6_K*kqsx;
|
| 885 |
+
|
| 886 |
+
const int ql = get_int_from_uint8(bxi->ql, kqsx);
|
| 887 |
+
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
| 888 |
+
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
| 889 |
+
|
| 890 |
+
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
|
| 891 |
+
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
|
| 892 |
+
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
|
| 893 |
+
|
| 894 |
+
const int kq0 = ky - ky % QI6_K + threadIdx.x % (QI6_K/2) + 0;
|
| 895 |
+
const int kq1 = ky - ky % QI6_K + threadIdx.x % (QI6_K/2) + (QI6_K/2);
|
| 896 |
+
|
| 897 |
+
x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
|
| 898 |
+
x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
|
| 899 |
+
}
|
| 900 |
+
|
| 901 |
+
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
|
| 902 |
+
const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
| 903 |
+
float * x_dmf = (float *) x_dm;
|
| 904 |
+
|
| 905 |
+
#pragma unroll
|
| 906 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
|
| 907 |
+
int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
|
| 908 |
+
|
| 909 |
+
if (need_check) {
|
| 910 |
+
i = min(i, i_max);
|
| 911 |
+
}
|
| 912 |
+
|
| 913 |
+
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd;
|
| 914 |
+
|
| 915 |
+
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
|
| 916 |
+
}
|
| 917 |
+
|
| 918 |
+
#pragma unroll
|
| 919 |
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
| 920 |
+
int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
|
| 921 |
+
|
| 922 |
+
if (need_check) {
|
| 923 |
+
i = min(i, i_max);
|
| 924 |
+
}
|
| 925 |
+
|
| 926 |
+
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4;
|
| 927 |
+
|
| 928 |
+
x_sc[i * (WARP_SIZE/8) + i / 8 + threadIdx.x % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, threadIdx.x % (QI6_K/8));
|
| 929 |
+
}
|
| 930 |
+
}
|
| 931 |
+
|
| 932 |
+
template <int mmq_x, int mmq_y, int nwarps>
|
| 933 |
+
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mul_mat(
|
| 934 |
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
| 935 |
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, float * __restrict__ sum, const int & k0) {
|
| 936 |
+
|
| 937 |
+
GGML_UNUSED(x_qh);
|
| 938 |
+
|
| 939 |
+
#pragma unroll
|
| 940 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 941 |
+
const int j = j0 + threadIdx.y;
|
| 942 |
+
|
| 943 |
+
#pragma unroll
|
| 944 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 945 |
+
const int i = i0 + threadIdx.x;
|
| 946 |
+
|
| 947 |
+
const float * x_dmf = (const float *) x_dm;
|
| 948 |
+
const float * y_df = (const float *) y_ds;
|
| 949 |
+
|
| 950 |
+
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/8]);
|
| 951 |
+
|
| 952 |
+
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k0;
|
| 953 |
+
const int index_y = j * WARP_SIZE + (QR6_K*k0) % WARP_SIZE;
|
| 954 |
+
sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq(
|
| 955 |
+
&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
|
| 956 |
+
}
|
| 957 |
+
}
|
| 958 |
+
}
|
| 959 |
+
|
| 960 |
+
// -------------------------------------------------------------------------------------------------------------------------------------
|
| 961 |
+
|
| 962 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check, ggml_type type>
|
| 963 |
+
struct mmq_type_traits;
|
| 964 |
+
|
| 965 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 966 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_0> {
|
| 967 |
+
static constexpr bool need_sum = true;
|
| 968 |
+
static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ;
|
| 969 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0<mmq_y, nwarps, need_check>;
|
| 970 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_0_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 971 |
+
};
|
| 972 |
+
|
| 973 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 974 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_1> {
|
| 975 |
+
static constexpr bool need_sum = true;
|
| 976 |
+
static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ;
|
| 977 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1<mmq_y, nwarps, need_check>;
|
| 978 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_1_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 979 |
+
};
|
| 980 |
+
|
| 981 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 982 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_0> {
|
| 983 |
+
static constexpr bool need_sum = false;
|
| 984 |
+
static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ;
|
| 985 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0<mmq_y, nwarps, need_check>;
|
| 986 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_0_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 987 |
+
};
|
| 988 |
+
|
| 989 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 990 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_1> {
|
| 991 |
+
static constexpr bool need_sum = true;
|
| 992 |
+
static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ;
|
| 993 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1<mmq_y, nwarps, need_check>;
|
| 994 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_1_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 995 |
+
};
|
| 996 |
+
|
| 997 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 998 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q8_0> {
|
| 999 |
+
static constexpr bool need_sum = false;
|
| 1000 |
+
static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ;
|
| 1001 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0<mmq_y, nwarps, need_check>;
|
| 1002 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q8_0_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 1003 |
+
};
|
| 1004 |
+
|
| 1005 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 1006 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q2_K> {
|
| 1007 |
+
static constexpr bool need_sum = false;
|
| 1008 |
+
static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ;
|
| 1009 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K<mmq_y, nwarps, need_check>;
|
| 1010 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q2_K_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 1011 |
+
};
|
| 1012 |
+
|
| 1013 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 1014 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q3_K> {
|
| 1015 |
+
static constexpr bool need_sum = false;
|
| 1016 |
+
static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ;
|
| 1017 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K<mmq_y, nwarps, need_check>;
|
| 1018 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q3_K_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 1019 |
+
};
|
| 1020 |
+
|
| 1021 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 1022 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_K> {
|
| 1023 |
+
static constexpr bool need_sum = true;
|
| 1024 |
+
static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ;
|
| 1025 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K<mmq_y, nwarps, need_check>;
|
| 1026 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q4_K_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 1027 |
+
};
|
| 1028 |
+
|
| 1029 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 1030 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_K> {
|
| 1031 |
+
static constexpr bool need_sum = true;
|
| 1032 |
+
static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ;
|
| 1033 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K<mmq_y, nwarps, need_check>;
|
| 1034 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q5_K_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 1035 |
+
};
|
| 1036 |
+
|
| 1037 |
+
template <int mmq_x, int mmq_y, int nwarps, bool need_check>
|
| 1038 |
+
struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q6_K> {
|
| 1039 |
+
static constexpr bool need_sum = false;
|
| 1040 |
+
static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ;
|
| 1041 |
+
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K<mmq_y, nwarps, need_check>;
|
| 1042 |
+
static constexpr vec_dot_mmq_t vec_dot = vec_dot_q6_K_q8_1_mul_mat<mmq_x, mmq_y, nwarps>;
|
| 1043 |
+
};
|
| 1044 |
+
|
| 1045 |
+
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
| 1046 |
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1047 |
+
#if defined(RDNA3) || defined(RDNA2)
|
| 1048 |
+
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
| 1049 |
+
#endif // defined(RDNA3) || defined(RDNA2)
|
| 1050 |
+
#else
|
| 1051 |
+
#if __CUDA_ARCH__ >= CC_VOLTA
|
| 1052 |
+
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
| 1053 |
+
#else
|
| 1054 |
+
__launch_bounds__(WARP_SIZE*nwarps, type == GGML_TYPE_Q2_K ? 1 : 2)
|
| 1055 |
+
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
| 1056 |
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
| 1057 |
+
static __global__ void mul_mat_q(
|
| 1058 |
+
const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst,
|
| 1059 |
+
const int ne00, const int ne01, const int stride00, const int ne10, const int ne11, const int ne0) {
|
| 1060 |
+
|
| 1061 |
+
// Skip unused template specializations for faster compilation:
|
| 1062 |
+
if (mmq_x > get_mmq_x_max_device()) {
|
| 1063 |
+
NO_DEVICE_CODE;
|
| 1064 |
+
return;
|
| 1065 |
+
}
|
| 1066 |
+
|
| 1067 |
+
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
| 1068 |
+
constexpr int qr = ggml_cuda_type_traits<type>::qr;
|
| 1069 |
+
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
| 1070 |
+
constexpr int mmq_y = get_mmq_y_device(mmq_x);
|
| 1071 |
+
constexpr bool need_sum = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::need_sum;
|
| 1072 |
+
constexpr int vdr = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vdr;
|
| 1073 |
+
constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles;
|
| 1074 |
+
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot;
|
| 1075 |
+
|
| 1076 |
+
constexpr tile_x_sizes txs = get_tile_x_sizes_device<mmq_y>(type);
|
| 1077 |
+
|
| 1078 |
+
extern __shared__ char data_mul_mat_q[];
|
| 1079 |
+
int * tile_x_ql = (int *) data_mul_mat_q;
|
| 1080 |
+
half2 * tile_x_dm = (half2 *) (tile_x_ql + txs.ql);
|
| 1081 |
+
int * tile_x_qh = (int *) (tile_x_dm + txs.dm);
|
| 1082 |
+
int * tile_x_sc = (int *) (tile_x_qh + txs.qh);
|
| 1083 |
+
int * tile_y_qs = (int *) (tile_x_sc + txs.sc); // [mmq_x * WARP_SIZE]
|
| 1084 |
+
half2 * tile_y_ds = (half2 *) (tile_y_qs + mmq_x*WARP_SIZE); // [mmq_x * WARP_SIZE/QI8_1];
|
| 1085 |
+
|
| 1086 |
+
const block_q8_1 * y = (const block_q8_1 *) yc;
|
| 1087 |
+
|
| 1088 |
+
const int blocks_per_row_x = ne00 / qk;
|
| 1089 |
+
const int blocks_per_col_y = ne10 / QK8_1;
|
| 1090 |
+
const int blocks_per_warp = WARP_SIZE / qi;
|
| 1091 |
+
|
| 1092 |
+
const int & ne1 = ne11;
|
| 1093 |
+
|
| 1094 |
+
const int tile_x_max_i = ne01 - blockIdx.x*mmq_y - 1;
|
| 1095 |
+
|
| 1096 |
+
float sum[(mmq_x/nwarps) * (mmq_y/WARP_SIZE)] = {0.0f};
|
| 1097 |
+
|
| 1098 |
+
for (int kb0 = 0; kb0 < blocks_per_row_x; kb0 += blocks_per_warp) {
|
| 1099 |
+
|
| 1100 |
+
load_tiles(x, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, stride00*blockIdx.x*mmq_y + kb0, tile_x_max_i, stride00);
|
| 1101 |
+
|
| 1102 |
+
#pragma unroll
|
| 1103 |
+
for (int kr = 0; kr < qr; ++kr) {
|
| 1104 |
+
const int kqs = kr*WARP_SIZE + threadIdx.x;
|
| 1105 |
+
const int kbxd = kqs / QI8_1;
|
| 1106 |
+
|
| 1107 |
+
#pragma unroll
|
| 1108 |
+
for (int i0 = 0; i0 < mmq_x; i0 += nwarps) {
|
| 1109 |
+
const int i = min(blockIdx.y*mmq_x + threadIdx.y + i0, ne11-1); // to prevent out-of-bounds memory accesses
|
| 1110 |
+
|
| 1111 |
+
const block_q8_1 * by0 = &y[i*blocks_per_col_y + kb0 * (qk/QK8_1) + kbxd];
|
| 1112 |
+
|
| 1113 |
+
const int index_y = (i0 + threadIdx.y) * WARP_SIZE + kqs % WARP_SIZE;
|
| 1114 |
+
tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
|
| 1115 |
+
}
|
| 1116 |
+
|
| 1117 |
+
#pragma unroll
|
| 1118 |
+
for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
|
| 1119 |
+
const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
|
| 1120 |
+
const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
|
| 1121 |
+
const int i_y_eff = min(blockIdx.y*mmq_x + ids, ne11-1);
|
| 1122 |
+
|
| 1123 |
+
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
|
| 1124 |
+
const half2 * dsi_src = &y[i_y_eff*blocks_per_col_y + kb0 * (qk/QK8_1) + kr*(WARP_SIZE/QI8_1) + kby].ds;
|
| 1125 |
+
half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
|
| 1126 |
+
if (need_sum) {
|
| 1127 |
+
*dsi_dst = *dsi_src;
|
| 1128 |
+
} else {
|
| 1129 |
+
float * dfi_dst = (float *) dsi_dst;
|
| 1130 |
+
*dfi_dst = __low2float(*dsi_src);
|
| 1131 |
+
}
|
| 1132 |
+
}
|
| 1133 |
+
|
| 1134 |
+
__syncthreads();
|
| 1135 |
+
|
| 1136 |
+
// #pragma unroll // unrolling this loop causes too much register pressure
|
| 1137 |
+
for (int k0 = kr*WARP_SIZE/qr; k0 < (kr+1)*WARP_SIZE/qr; k0 += vdr) {
|
| 1138 |
+
vec_dot(tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds, sum, k0);
|
| 1139 |
+
}
|
| 1140 |
+
|
| 1141 |
+
__syncthreads();
|
| 1142 |
+
}
|
| 1143 |
+
}
|
| 1144 |
+
|
| 1145 |
+
#pragma unroll
|
| 1146 |
+
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
|
| 1147 |
+
const int j = blockIdx.y*mmq_x + j0 + threadIdx.y;
|
| 1148 |
+
|
| 1149 |
+
if (j >= ne1) {
|
| 1150 |
+
return;
|
| 1151 |
+
}
|
| 1152 |
+
|
| 1153 |
+
#pragma unroll
|
| 1154 |
+
for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
|
| 1155 |
+
const int i = blockIdx.x*mmq_y + i0 + threadIdx.x;
|
| 1156 |
+
|
| 1157 |
+
if (need_check && i >= ne0) {
|
| 1158 |
+
continue;
|
| 1159 |
+
}
|
| 1160 |
+
|
| 1161 |
+
dst[j*ne0 + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
|
| 1162 |
+
}
|
| 1163 |
+
}
|
| 1164 |
+
}
|
| 1165 |
+
|
| 1166 |
+
struct mmq_args {
|
| 1167 |
+
const char * x; const char * y; float * dst;
|
| 1168 |
+
int64_t ne00; int64_t ne01; int64_t stride00;
|
| 1169 |
+
int64_t ne10; int64_t ne11;
|
| 1170 |
+
int64_t ne0;
|
| 1171 |
+
};
|
| 1172 |
+
|
| 1173 |
+
template <ggml_type type, int mmq_x, int nwarps>
|
| 1174 |
+
static void launch_mul_mat_q(const mmq_args & args, cudaStream_t stream) {
|
| 1175 |
+
const int id = ggml_cuda_get_device();
|
| 1176 |
+
const int cc = ggml_cuda_info().devices[id].cc;
|
| 1177 |
+
const int mmq_y = get_mmq_y_host(cc, mmq_x);
|
| 1178 |
+
|
| 1179 |
+
const int block_num_x = (args.ne01 + mmq_y - 1) / mmq_y;
|
| 1180 |
+
const int block_num_y = (args.ne11 + mmq_x - 1) / mmq_x;
|
| 1181 |
+
const dim3 block_nums(block_num_x, block_num_y, 1);
|
| 1182 |
+
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
| 1183 |
+
|
| 1184 |
+
const tile_x_sizes txs = get_tile_x_sizes_host(type, mmq_y);
|
| 1185 |
+
const int shmem_x = txs.ql*sizeof(int) + txs.dm*sizeof(half2) + txs.qh*sizeof(int) + txs.sc*sizeof(int);
|
| 1186 |
+
const int shmem_y = mmq_x*WARP_SIZE*sizeof(int) + mmq_x*(WARP_SIZE/QI8_1)*sizeof(half2);
|
| 1187 |
+
const int shmem = shmem_x + shmem_y;
|
| 1188 |
+
|
| 1189 |
+
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 1190 |
+
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
| 1191 |
+
if (!shmem_limit_raised[id]) {
|
| 1192 |
+
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, nwarps, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
| 1193 |
+
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, nwarps, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
|
| 1194 |
+
shmem_limit_raised[id] = true;
|
| 1195 |
+
}
|
| 1196 |
+
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 1197 |
+
|
| 1198 |
+
if (args.ne01 % mmq_y == 0) {
|
| 1199 |
+
const bool need_check = false;
|
| 1200 |
+
mul_mat_q<type, mmq_x, nwarps, need_check><<<block_nums, block_dims, shmem, stream>>>
|
| 1201 |
+
(args.x, args.y, args.dst, args.ne00, args.ne01, args.stride00, args.ne10, args.ne11, args.ne0);
|
| 1202 |
+
} else {
|
| 1203 |
+
const bool need_check = true;
|
| 1204 |
+
mul_mat_q<type, mmq_x, nwarps, need_check><<<block_nums, block_dims, shmem, stream>>>
|
| 1205 |
+
(args.x, args.y, args.dst, args.ne00, args.ne01, args.stride00, args.ne10, args.ne11, args.ne0);
|
| 1206 |
+
}
|
| 1207 |
+
}
|
| 1208 |
+
|
| 1209 |
+
template <ggml_type type>
|
| 1210 |
+
void mul_mat_q_case(const mmq_args & args, cudaStream_t stream) {
|
| 1211 |
+
const int id = ggml_cuda_get_device();
|
| 1212 |
+
const int nsm = ggml_cuda_info().devices[id].nsm;
|
| 1213 |
+
const int cc = ggml_cuda_info().devices[id].cc;
|
| 1214 |
+
|
| 1215 |
+
const int mmq_x_max = get_mmq_x_max_host(cc);
|
| 1216 |
+
const int mmq_y = get_mmq_y_host(cc, mmq_x_max);
|
| 1217 |
+
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
|
| 1218 |
+
|
| 1219 |
+
int mmq_x_best = 0;
|
| 1220 |
+
int nwaves_best = INT_MAX;
|
| 1221 |
+
|
| 1222 |
+
for (int mmq_x = 8; mmq_x <= mmq_x_max && nwaves_best > 1; mmq_x += 8) {
|
| 1223 |
+
const int block_num_x = (args.ne11 + mmq_x - 1) / mmq_x;
|
| 1224 |
+
const int nwaves = (block_num_x*block_num_y + nsm - 1) / nsm;
|
| 1225 |
+
|
| 1226 |
+
if (nwaves < nwaves_best) {
|
| 1227 |
+
mmq_x_best = mmq_x;
|
| 1228 |
+
nwaves_best = nwaves;
|
| 1229 |
+
}
|
| 1230 |
+
}
|
| 1231 |
+
|
| 1232 |
+
switch (mmq_x_best) {
|
| 1233 |
+
case 8:
|
| 1234 |
+
launch_mul_mat_q<type, 8, 4>(args, stream);
|
| 1235 |
+
break;
|
| 1236 |
+
case 16:
|
| 1237 |
+
launch_mul_mat_q<type, 16, 8>(args, stream);
|
| 1238 |
+
break;
|
| 1239 |
+
case 24:
|
| 1240 |
+
launch_mul_mat_q<type, 24, 8>(args, stream);
|
| 1241 |
+
break;
|
| 1242 |
+
case 32:
|
| 1243 |
+
launch_mul_mat_q<type, 32, 8>(args, stream);
|
| 1244 |
+
break;
|
| 1245 |
+
case 40:
|
| 1246 |
+
launch_mul_mat_q<type, 40, 8>(args, stream);
|
| 1247 |
+
break;
|
| 1248 |
+
case 48:
|
| 1249 |
+
launch_mul_mat_q<type, 48, 8>(args, stream);
|
| 1250 |
+
break;
|
| 1251 |
+
case 56:
|
| 1252 |
+
launch_mul_mat_q<type, 56, 8>(args, stream);
|
| 1253 |
+
break;
|
| 1254 |
+
case 64:
|
| 1255 |
+
launch_mul_mat_q<type, 64, 8>(args, stream);
|
| 1256 |
+
break;
|
| 1257 |
+
case 72:
|
| 1258 |
+
launch_mul_mat_q<type, 72, 8>(args, stream);
|
| 1259 |
+
break;
|
| 1260 |
+
case 80:
|
| 1261 |
+
launch_mul_mat_q<type, 80, 8>(args, stream);
|
| 1262 |
+
break;
|
| 1263 |
+
case 88:
|
| 1264 |
+
launch_mul_mat_q<type, 88, 8>(args, stream);
|
| 1265 |
+
break;
|
| 1266 |
+
case 96:
|
| 1267 |
+
launch_mul_mat_q<type, 96, 8>(args, stream);
|
| 1268 |
+
break;
|
| 1269 |
+
case 104:
|
| 1270 |
+
launch_mul_mat_q<type, 104, 8>(args, stream);
|
| 1271 |
+
break;
|
| 1272 |
+
case 112:
|
| 1273 |
+
launch_mul_mat_q<type, 112, 8>(args, stream);
|
| 1274 |
+
break;
|
| 1275 |
+
case 120:
|
| 1276 |
+
launch_mul_mat_q<type, 120, 8>(args, stream);
|
| 1277 |
+
break;
|
| 1278 |
+
case 128:
|
| 1279 |
+
launch_mul_mat_q<type, 128, 8>(args, stream);
|
| 1280 |
+
break;
|
| 1281 |
+
default:
|
| 1282 |
+
GGML_ASSERT(false);
|
| 1283 |
+
break;
|
| 1284 |
+
}
|
| 1285 |
+
}
|
| 1286 |
+
|
| 1287 |
+
#define DECL_MMQ_CASE(type) \
|
| 1288 |
+
template void mul_mat_q_case<type>(const mmq_args & args, cudaStream_t stream) \
|
| 1289 |
+
|
| 1290 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q4_0);
|
| 1291 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);
|
| 1292 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q5_0);
|
| 1293 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q5_1);
|
| 1294 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q8_0);
|
| 1295 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q2_K);
|
| 1296 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q3_K);
|
| 1297 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q4_K);
|
| 1298 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q5_K);
|
| 1299 |
+
extern DECL_MMQ_CASE(GGML_TYPE_Q6_K);
|
| 1300 |
+
|
| 1301 |
+
// -------------------------------------------------------------------------------------------------------------------------
|
| 1302 |
|
| 1303 |
void ggml_cuda_op_mul_mat_q(
|
| 1304 |
ggml_backend_cuda_context & ctx,
|
ggml-cuda/mmvq.cu
CHANGED
|
@@ -1,9 +1,47 @@
|
|
| 1 |
#include "mmvq.cuh"
|
| 2 |
#include "vecdotq.cuh"
|
| 3 |
|
| 4 |
-
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
template <
|
| 7 |
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 8 |
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
| 9 |
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
|
@@ -12,6 +50,12 @@ static __global__ void mul_mat_vec_q(
|
|
| 12 |
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 13 |
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
| 16 |
constexpr int nwarps = 1;
|
| 17 |
constexpr int rows_per_cuda_block = 1;
|
|
@@ -29,7 +73,6 @@ static __global__ void mul_mat_vec_q(
|
|
| 29 |
// partial sum for each thread
|
| 30 |
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
| 31 |
|
| 32 |
-
const block_q_t * x = (const block_q_t *) vx;
|
| 33 |
const block_q8_1 * y = (const block_q8_1 *) vy;
|
| 34 |
|
| 35 |
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
|
@@ -42,8 +85,7 @@ static __global__ void mul_mat_vec_q(
|
|
| 42 |
for (int j = 0; j < ncols_y; ++j) {
|
| 43 |
#pragma unroll
|
| 44 |
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
| 45 |
-
tmp[j][i] += vec_dot_q_cuda(
|
| 46 |
-
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
|
| 47 |
}
|
| 48 |
}
|
| 49 |
}
|
|
@@ -81,12 +123,12 @@ static __global__ void mul_mat_vec_q(
|
|
| 81 |
}
|
| 82 |
}
|
| 83 |
|
| 84 |
-
template <
|
| 85 |
static void mul_mat_vec_q_cuda(
|
| 86 |
const void * vx, const void * vy, float * dst,
|
| 87 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 88 |
|
| 89 |
-
GGML_ASSERT(ncols_x %
|
| 90 |
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
| 91 |
|
| 92 |
int id = ggml_cuda_get_device();
|
|
@@ -124,36 +166,28 @@ static void mul_mat_vec_q_cuda(
|
|
| 124 |
|
| 125 |
switch (ncols_y) {
|
| 126 |
case 1:
|
| 127 |
-
mul_mat_vec_q<1,
|
| 128 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 129 |
break;
|
| 130 |
case 2:
|
| 131 |
-
mul_mat_vec_q<2,
|
| 132 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 133 |
break;
|
| 134 |
case 3:
|
| 135 |
-
mul_mat_vec_q<3,
|
| 136 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 137 |
break;
|
| 138 |
case 4:
|
| 139 |
-
mul_mat_vec_q<4,
|
| 140 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 141 |
break;
|
| 142 |
case 5:
|
| 143 |
-
mul_mat_vec_q<5,
|
| 144 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 145 |
break;
|
| 146 |
case 6:
|
| 147 |
-
mul_mat_vec_q<6,
|
| 148 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 149 |
break;
|
| 150 |
case 7:
|
| 151 |
-
mul_mat_vec_q<7,
|
| 152 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 153 |
break;
|
| 154 |
case 8:
|
| 155 |
-
mul_mat_vec_q<8,
|
| 156 |
-
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
| 157 |
break;
|
| 158 |
default:
|
| 159 |
GGML_ASSERT(false);
|
|
@@ -165,152 +199,133 @@ static void mul_mat_vec_q4_0_q8_1_cuda(
|
|
| 165 |
const void * vx, const void * vy, float * dst,
|
| 166 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 167 |
|
| 168 |
-
mul_mat_vec_q_cuda<
|
| 169 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 170 |
}
|
| 171 |
|
| 172 |
static void mul_mat_vec_q4_1_q8_1_cuda(
|
| 173 |
const void * vx, const void * vy, float * dst,
|
| 174 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 175 |
|
| 176 |
-
mul_mat_vec_q_cuda<
|
| 177 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 178 |
}
|
| 179 |
|
| 180 |
static void mul_mat_vec_q5_0_q8_1_cuda(
|
| 181 |
const void * vx, const void * vy, float * dst,
|
| 182 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 183 |
|
| 184 |
-
mul_mat_vec_q_cuda<
|
| 185 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 186 |
}
|
| 187 |
|
| 188 |
static void mul_mat_vec_q5_1_q8_1_cuda(
|
| 189 |
const void * vx, const void * vy, float * dst,
|
| 190 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 191 |
|
| 192 |
-
mul_mat_vec_q_cuda<
|
| 193 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 194 |
}
|
| 195 |
|
| 196 |
static void mul_mat_vec_q8_0_q8_1_cuda(
|
| 197 |
const void * vx, const void * vy, float * dst,
|
| 198 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 199 |
|
| 200 |
-
mul_mat_vec_q_cuda<
|
| 201 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 202 |
}
|
| 203 |
|
| 204 |
static void mul_mat_vec_q2_K_q8_1_cuda(
|
| 205 |
const void * vx, const void * vy, float * dst,
|
| 206 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 207 |
|
| 208 |
-
mul_mat_vec_q_cuda<
|
| 209 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 210 |
}
|
| 211 |
|
| 212 |
static void mul_mat_vec_q3_K_q8_1_cuda(
|
| 213 |
const void * vx, const void * vy, float * dst,
|
| 214 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 215 |
|
| 216 |
-
mul_mat_vec_q_cuda<
|
| 217 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 218 |
}
|
| 219 |
|
| 220 |
static void mul_mat_vec_q4_K_q8_1_cuda(
|
| 221 |
const void * vx, const void * vy, float * dst,
|
| 222 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 223 |
|
| 224 |
-
mul_mat_vec_q_cuda<
|
| 225 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 226 |
}
|
| 227 |
|
| 228 |
static void mul_mat_vec_q5_K_q8_1_cuda(
|
| 229 |
const void * vx, const void * vy, float * dst,
|
| 230 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 231 |
|
| 232 |
-
mul_mat_vec_q_cuda<
|
| 233 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 234 |
}
|
| 235 |
|
| 236 |
static void mul_mat_vec_q6_K_q8_1_cuda(
|
| 237 |
const void * vx, const void * vy, float * dst,
|
| 238 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 239 |
|
| 240 |
-
mul_mat_vec_q_cuda<
|
| 241 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 242 |
}
|
| 243 |
|
| 244 |
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
| 245 |
const void * vx, const void * vy, float * dst,
|
| 246 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 247 |
|
| 248 |
-
mul_mat_vec_q_cuda<
|
| 249 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 250 |
}
|
| 251 |
|
| 252 |
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
| 253 |
const void * vx, const void * vy, float * dst,
|
| 254 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 255 |
|
| 256 |
-
mul_mat_vec_q_cuda<
|
| 257 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 258 |
}
|
| 259 |
|
| 260 |
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
| 261 |
const void * vx, const void * vy, float * dst,
|
| 262 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 263 |
|
| 264 |
-
mul_mat_vec_q_cuda<
|
| 265 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 266 |
}
|
| 267 |
|
| 268 |
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
| 269 |
const void * vx, const void * vy, float * dst,
|
| 270 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 271 |
|
| 272 |
-
mul_mat_vec_q_cuda<
|
| 273 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 274 |
}
|
| 275 |
|
| 276 |
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
| 277 |
const void * vx, const void * vy, float * dst,
|
| 278 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 279 |
|
| 280 |
-
mul_mat_vec_q_cuda<
|
| 281 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 282 |
}
|
| 283 |
|
| 284 |
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
| 285 |
const void * vx, const void * vy, float * dst,
|
| 286 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 287 |
|
| 288 |
-
mul_mat_vec_q_cuda<
|
| 289 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 290 |
}
|
| 291 |
|
| 292 |
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
| 293 |
const void * vx, const void * vy, float * dst,
|
| 294 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 295 |
|
| 296 |
-
mul_mat_vec_q_cuda<
|
| 297 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 298 |
}
|
| 299 |
|
| 300 |
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
| 301 |
const void * vx, const void * vy, float * dst,
|
| 302 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 303 |
|
| 304 |
-
mul_mat_vec_q_cuda<
|
| 305 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 306 |
}
|
| 307 |
|
| 308 |
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
| 309 |
const void * vx, const void * vy, float * dst,
|
| 310 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 311 |
|
| 312 |
-
mul_mat_vec_q_cuda<
|
| 313 |
-
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
| 314 |
}
|
| 315 |
|
| 316 |
void ggml_cuda_op_mul_mat_vec_q(
|
|
|
|
| 1 |
#include "mmvq.cuh"
|
| 2 |
#include "vecdotq.cuh"
|
| 3 |
|
| 4 |
+
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
|
| 5 |
+
|
| 6 |
+
static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
|
| 7 |
+
return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
|
| 8 |
+
type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
|
| 9 |
+
type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
|
| 10 |
+
type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
|
| 11 |
+
type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
|
| 12 |
+
type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
|
| 13 |
+
type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
|
| 14 |
+
type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
|
| 15 |
+
type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
|
| 16 |
+
type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
|
| 17 |
+
type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
|
| 18 |
+
type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
|
| 19 |
+
type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
|
| 20 |
+
type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
|
| 21 |
+
type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
|
| 22 |
+
type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
|
| 23 |
+
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
|
| 24 |
+
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
|
| 25 |
+
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
|
| 26 |
+
nullptr;
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
|
| 30 |
+
return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
|
| 31 |
+
type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
|
| 32 |
+
type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
|
| 33 |
+
type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
|
| 34 |
+
type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
|
| 35 |
+
type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
|
| 36 |
+
type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
|
| 37 |
+
type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
|
| 38 |
+
type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
|
| 39 |
+
type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
|
| 40 |
+
type == GGML_TYPE_IQ4_NL ? VDR_Q4_K_Q8_1_MMVQ :
|
| 41 |
+
1;
|
| 42 |
+
}
|
| 43 |
|
| 44 |
+
template <ggml_type type, int ncols_y>
|
| 45 |
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
| 46 |
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
| 47 |
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
|
|
|
| 50 |
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
| 51 |
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
| 52 |
|
| 53 |
+
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
| 54 |
+
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
| 55 |
+
constexpr int vdr = get_vdr_mmvq(type);
|
| 56 |
+
|
| 57 |
+
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
| 58 |
+
|
| 59 |
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
| 60 |
constexpr int nwarps = 1;
|
| 61 |
constexpr int rows_per_cuda_block = 1;
|
|
|
|
| 73 |
// partial sum for each thread
|
| 74 |
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
| 75 |
|
|
|
|
| 76 |
const block_q8_1 * y = (const block_q8_1 *) vy;
|
| 77 |
|
| 78 |
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
|
|
|
| 85 |
for (int j = 0; j < ncols_y; ++j) {
|
| 86 |
#pragma unroll
|
| 87 |
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
| 88 |
+
tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
|
|
|
|
| 89 |
}
|
| 90 |
}
|
| 91 |
}
|
|
|
|
| 123 |
}
|
| 124 |
}
|
| 125 |
|
| 126 |
+
template <ggml_type type>
|
| 127 |
static void mul_mat_vec_q_cuda(
|
| 128 |
const void * vx, const void * vy, float * dst,
|
| 129 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 130 |
|
| 131 |
+
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
| 132 |
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
| 133 |
|
| 134 |
int id = ggml_cuda_get_device();
|
|
|
|
| 166 |
|
| 167 |
switch (ncols_y) {
|
| 168 |
case 1:
|
| 169 |
+
mul_mat_vec_q<type, 1><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 170 |
break;
|
| 171 |
case 2:
|
| 172 |
+
mul_mat_vec_q<type, 2><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 173 |
break;
|
| 174 |
case 3:
|
| 175 |
+
mul_mat_vec_q<type, 3><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 176 |
break;
|
| 177 |
case 4:
|
| 178 |
+
mul_mat_vec_q<type, 4><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 179 |
break;
|
| 180 |
case 5:
|
| 181 |
+
mul_mat_vec_q<type, 5><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 182 |
break;
|
| 183 |
case 6:
|
| 184 |
+
mul_mat_vec_q<type, 6><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 185 |
break;
|
| 186 |
case 7:
|
| 187 |
+
mul_mat_vec_q<type, 7><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 188 |
break;
|
| 189 |
case 8:
|
| 190 |
+
mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
|
|
| 191 |
break;
|
| 192 |
default:
|
| 193 |
GGML_ASSERT(false);
|
|
|
|
| 199 |
const void * vx, const void * vy, float * dst,
|
| 200 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 201 |
|
| 202 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q4_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 203 |
}
|
| 204 |
|
| 205 |
static void mul_mat_vec_q4_1_q8_1_cuda(
|
| 206 |
const void * vx, const void * vy, float * dst,
|
| 207 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 208 |
|
| 209 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q4_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 210 |
}
|
| 211 |
|
| 212 |
static void mul_mat_vec_q5_0_q8_1_cuda(
|
| 213 |
const void * vx, const void * vy, float * dst,
|
| 214 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 215 |
|
| 216 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q5_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 217 |
}
|
| 218 |
|
| 219 |
static void mul_mat_vec_q5_1_q8_1_cuda(
|
| 220 |
const void * vx, const void * vy, float * dst,
|
| 221 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 222 |
|
| 223 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q5_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 224 |
}
|
| 225 |
|
| 226 |
static void mul_mat_vec_q8_0_q8_1_cuda(
|
| 227 |
const void * vx, const void * vy, float * dst,
|
| 228 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 229 |
|
| 230 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q8_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 231 |
}
|
| 232 |
|
| 233 |
static void mul_mat_vec_q2_K_q8_1_cuda(
|
| 234 |
const void * vx, const void * vy, float * dst,
|
| 235 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 236 |
|
| 237 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 238 |
}
|
| 239 |
|
| 240 |
static void mul_mat_vec_q3_K_q8_1_cuda(
|
| 241 |
const void * vx, const void * vy, float * dst,
|
| 242 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 243 |
|
| 244 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q3_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 245 |
}
|
| 246 |
|
| 247 |
static void mul_mat_vec_q4_K_q8_1_cuda(
|
| 248 |
const void * vx, const void * vy, float * dst,
|
| 249 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 250 |
|
| 251 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 252 |
}
|
| 253 |
|
| 254 |
static void mul_mat_vec_q5_K_q8_1_cuda(
|
| 255 |
const void * vx, const void * vy, float * dst,
|
| 256 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 257 |
|
| 258 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 259 |
}
|
| 260 |
|
| 261 |
static void mul_mat_vec_q6_K_q8_1_cuda(
|
| 262 |
const void * vx, const void * vy, float * dst,
|
| 263 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 264 |
|
| 265 |
+
mul_mat_vec_q_cuda<GGML_TYPE_Q6_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 266 |
}
|
| 267 |
|
| 268 |
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
| 269 |
const void * vx, const void * vy, float * dst,
|
| 270 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 271 |
|
| 272 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 273 |
}
|
| 274 |
|
| 275 |
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
| 276 |
const void * vx, const void * vy, float * dst,
|
| 277 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 278 |
|
| 279 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 280 |
}
|
| 281 |
|
| 282 |
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
| 283 |
const void * vx, const void * vy, float * dst,
|
| 284 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 285 |
|
| 286 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 287 |
}
|
| 288 |
|
| 289 |
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
| 290 |
const void * vx, const void * vy, float * dst,
|
| 291 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 292 |
|
| 293 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 294 |
}
|
| 295 |
|
| 296 |
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
| 297 |
const void * vx, const void * vy, float * dst,
|
| 298 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 299 |
|
| 300 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 301 |
}
|
| 302 |
|
| 303 |
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
| 304 |
const void * vx, const void * vy, float * dst,
|
| 305 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 306 |
|
| 307 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_M>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 308 |
}
|
| 309 |
|
| 310 |
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
| 311 |
const void * vx, const void * vy, float * dst,
|
| 312 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 313 |
|
| 314 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_NL>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 315 |
}
|
| 316 |
|
| 317 |
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
| 318 |
const void * vx, const void * vy, float * dst,
|
| 319 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 320 |
|
| 321 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 322 |
}
|
| 323 |
|
| 324 |
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
| 325 |
const void * vx, const void * vy, float * dst,
|
| 326 |
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
| 327 |
|
| 328 |
+
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
|
|
| 329 |
}
|
| 330 |
|
| 331 |
void ggml_cuda_op_mul_mat_vec_q(
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
// This file has been autogenerated by
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|
|
|
|
| 1 |
+
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
| 2 |
|
| 3 |
#include "../fattn-vec-f16.cuh"
|
| 4 |
|