Spaces:
Running
Running
| import streamlit as st | |
| import requests | |
| from bs4 import BeautifulSoup | |
| from transformers import pipeline | |
| # Set up MBTI classifier | |
| classifier = pipeline("text-classification", model="pandalla/MBTIGPT_en_ENTP") | |
| def scrape_mbti_lounge(mbti_type): | |
| url = f"https://mbtilounge.com/mbti/{mbti_type}" | |
| response = requests.get(url) | |
| soup = BeautifulSoup(response.text, 'html.parser') | |
| # Extract relevant information (adjust selectors as needed) | |
| description = soup.find('div', class_='type-description').text | |
| return description | |
| st.title("MBTI Lookup and Classification") | |
| user_input = st.text_area("Enter text to classify MBTI type:") | |
| if user_input: | |
| # Classify MBTI type | |
| result = classifier(user_input)[0] | |
| predicted_type = result['label'] | |
| confidence = result['score'] | |
| st.write(f"Predicted MBTI Type: {predicted_type}") | |
| st.write(f"Confidence: {confidence:.2f}") | |
| # Fetch MBTI type description from MBTI Lounge | |
| description = scrape_mbti_lounge(predicted_type) | |
| st.subheader(f"Description for {predicted_type}:") | |
| st.write(description) | |