Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
|
| 6 |
+
# Set up MBTI classifier
|
| 7 |
+
classifier = pipeline("text-classification", model="pandalla/MBTIGPT_en_ENTP")
|
| 8 |
+
|
| 9 |
+
def scrape_mbti_lounge(mbti_type):
|
| 10 |
+
url = f"https://mbtilounge.com/mbti/{mbti_type}"
|
| 11 |
+
response = requests.get(url)
|
| 12 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 13 |
+
# Extract relevant information (adjust selectors as needed)
|
| 14 |
+
description = soup.find('div', class_='type-description').text
|
| 15 |
+
return description
|
| 16 |
+
|
| 17 |
+
st.title("MBTI Lookup and Classification")
|
| 18 |
+
|
| 19 |
+
user_input = st.text_area("Enter text to classify MBTI type:")
|
| 20 |
+
|
| 21 |
+
if user_input:
|
| 22 |
+
# Classify MBTI type
|
| 23 |
+
result = classifier(user_input)[0]
|
| 24 |
+
predicted_type = result['label']
|
| 25 |
+
confidence = result['score']
|
| 26 |
+
|
| 27 |
+
st.write(f"Predicted MBTI Type: {predicted_type}")
|
| 28 |
+
st.write(f"Confidence: {confidence:.2f}")
|
| 29 |
+
|
| 30 |
+
# Fetch MBTI type description from MBTI Lounge
|
| 31 |
+
description = scrape_mbti_lounge(predicted_type)
|
| 32 |
+
st.subheader(f"Description for {predicted_type}:")
|
| 33 |
+
st.write(description)
|