File size: 20,326 Bytes
5b8270b
 
 
 
cd76271
 
 
 
 
 
5b8270b
cd76271
5b8270b
cd76271
 
 
 
1226094
cd76271
 
ea808ab
1226094
cd76271
5b8270b
1226094
 
 
 
cd76271
1226094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd76271
1226094
 
 
 
 
 
b22198b
ee482b5
be24378
cd76271
 
be24378
b22198b
be24378
 
cd76271
b22198b
 
 
cd76271
b22198b
 
 
cd76271
 
 
 
b22198b
cd76271
b22198b
 
cd76271
b22198b
 
cd76271
 
b22198b
cd76271
b22198b
cd76271
b22198b
 
be24378
cd76271
b22198b
e9a878b
b22198b
e9a878b
b22198b
e9a878b
be24378
 
e9a878b
 
cd76271
e9a878b
cd76271
e9a878b
cd76271
e9a878b
 
cd76271
e9a878b
 
 
be24378
e9a878b
 
 
be24378
e9a878b
be24378
cd76271
 
 
 
 
 
 
 
e9a878b
cd76271
 
 
b22198b
 
 
1226094
b22198b
 
cd76271
1226094
cd76271
b22198b
cd76271
5b8270b
cd76271
5b8270b
 
be24378
cd76271
 
ad93d00
be24378
ee482b5
 
be24378
b22198b
cd76271
be24378
ee482b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a878b
 
 
 
b22198b
e9a878b
b22198b
e9a878b
5b8270b
e9a878b
 
031d0a1
cd76271
 
b22198b
cd76271
1226094
ee482b5
1226094
e9a878b
ee482b5
 
e9a878b
ad93d00
e9a878b
 
ee482b5
 
 
 
e9a878b
ee482b5
e9a878b
ee482b5
1226094
3da96b2
1226094
 
 
e9a878b
 
1226094
 
ee482b5
 
1226094
 
ee482b5
1226094
 
ee482b5
1226094
 
 
 
ee482b5
1226094
ee482b5
 
cd76271
 
ee482b5
 
 
 
 
cd76271
ee482b5
cd76271
5b8270b
b22198b
 
5b8270b
 
cd76271
 
 
 
 
 
 
 
 
 
 
 
1226094
cd76271
 
 
 
 
 
1226094
b22198b
cd76271
b22198b
 
cd76271
b22198b
cd76271
b22198b
 
cd76271
5b8270b
1226094
 
 
 
 
 
5b8270b
 
b22198b
cd76271
5b8270b
 
1226094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b22198b
1226094
cd76271
 
 
1226094
 
 
cd76271
 
1226094
 
cd76271
 
b22198b
1226094
 
 
 
 
 
 
 
 
cd76271
5b8270b
b22198b
cd76271
be24378
cd76271
 
 
 
 
 
 
b22198b
cd76271
 
 
 
 
 
 
 
 
b22198b
cd76271
 
b22198b
 
66818c2
cd76271
b22198b
cd76271
b22198b
1226094
cd76271
b22198b
 
 
cd76271
1226094
cd76271
1226094
 
cd76271
b22198b
cd76271
 
 
 
 
 
 
 
b22198b
cd76271
 
 
 
 
 
 
 
 
 
 
 
097eb9b
 
 
e9a878b
 
b22198b
e9a878b
 
b22198b
097eb9b
cd76271
 
 
 
 
e9a878b
cd76271
 
1226094
 
 
e9a878b
1226094
 
e9a878b
 
1226094
 
 
 
 
 
 
 
 
 
cd76271
 
 
 
b22198b
 
 
1226094
b22198b
cd76271
 
 
 
b22198b
cd76271
b22198b
 
1226094
 
 
 
 
cd76271
 
 
 
 
b22198b
 
 
1226094
b22198b
cd76271
1226094
cd76271
097eb9b
b22198b
cd76271
b22198b
 
1226094
 
 
cd76271
1226094
b22198b
cd76271
b22198b
cd76271
 
1226094
 
 
 
 
cd76271
1226094
 
 
 
 
 
 
 
 
 
 
 
cd76271
1226094
 
 
cd76271
b22198b
 
cd76271
 
b22198b
cd76271
 
 
 
 
 
b22198b
cd76271
 
 
b22198b
cd76271
b22198b
 
cd76271
ad93d00
cd76271
b22198b
5b8270b
be24378
cd76271
 
 
b22198b
 
 
cd76271
ad93d00
cd76271
 
 
 
 
1226094
cd76271
 
 
 
 
 
 
 
 
e982174
5b8270b
b22198b
cd76271
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import gradio as gr
import numpy as np
import torch
import random
import os
import spaces
from PIL import Image, ImageOps, ImageFilter
from diffusers import FluxPipeline, DiffusionPipeline
import requests
from io import BytesIO

# Constants
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.getenv("HF_TOKEN")

# Model configuration
KONTEXT_MODEL = "black-forest-labs/FLUX.1-Kontext-dev"
FALLBACK_MODEL = "black-forest-labs/FLUX.1-dev"
LORA_MODEL = "thedeoxen/refcontrol-flux-kontext-reference-pose-lora"
TRIGGER_WORD = "refcontrolpose"

# Initialize pipeline
print("Loading models...")

def load_pipeline():
    """Load the appropriate pipeline based on availability"""
    global pipe, MODEL_STATUS
    
    try:
        # First, try to import necessary libraries
        try:
            from diffusers import FluxKontextPipeline
            import peft
            print("PEFT library found")
            use_kontext = True
        except ImportError:
            print("FluxKontextPipeline or PEFT not available, using fallback")
            use_kontext = False
        
        if use_kontext and HF_TOKEN:
            # Try to load Kontext model
            pipe = FluxKontextPipeline.from_pretrained(
                KONTEXT_MODEL,
                torch_dtype=torch.bfloat16,
                token=HF_TOKEN
            )
            
            # Try to load LoRA if PEFT is available
            try:
                pipe.load_lora_weights(
                    LORA_MODEL,
                    adapter_name="refcontrol",
                    token=HF_TOKEN
                )
                MODEL_STATUS = "βœ… Flux Kontext + RefControl LoRA loaded"
            except Exception as e:
                print(f"Could not load LoRA: {e}")
                MODEL_STATUS = "⚠️ Flux Kontext loaded (without LoRA - PEFT required)"
            
            pipe = pipe.to("cuda")
            
        else:
            # Fallback to standard FLUX
            pipe = FluxPipeline.from_pretrained(
                FALLBACK_MODEL,
                torch_dtype=torch.bfloat16,
                token=HF_TOKEN if HF_TOKEN else True
            )
            pipe = pipe.to("cuda")
            MODEL_STATUS = "⚠️ Using FLUX.1-dev (fallback mode)"
            
    except Exception as e:
        print(f"Error loading models: {e}")
        MODEL_STATUS = f"❌ Error: {str(e)}"
        pipe = None
    
    return pipe, MODEL_STATUS

# Load the pipeline
pipe, MODEL_STATUS = load_pipeline()
print(MODEL_STATUS)

def prepare_images_for_kontext(reference_image, pose_image, target_size=512):
    """
    Prepare reference and pose images for Kontext processing.
    Following the RefControl format: reference (left) | pose (right)
    """
    if reference_image is None or pose_image is None:
        return None
    
    # Convert to RGB
    reference_image = reference_image.convert("RGB")
    pose_image = pose_image.convert("RGB")
    
    # Calculate dimensions maintaining aspect ratio
    ref_ratio = reference_image.width / reference_image.height
    pose_ratio = pose_image.width / pose_image.height
    
    # Set heights to target size
    height = target_size
    ref_width = int(height * ref_ratio)
    pose_width = int(height * pose_ratio)
    
    # Ensure dimensions are divisible by 8 (FLUX requirement)
    ref_width = (ref_width // 8) * 8
    pose_width = (pose_width // 8) * 8
    height = (height // 8) * 8
    
    # Resize images
    reference_resized = reference_image.resize((ref_width, height), Image.LANCZOS)
    pose_resized = pose_image.resize((pose_width, height), Image.LANCZOS)
    
    # Concatenate horizontally: reference | pose
    total_width = ref_width + pose_width
    concatenated = Image.new('RGB', (total_width, height))
    concatenated.paste(reference_resized, (0, 0))
    concatenated.paste(pose_resized, (ref_width, 0))
    
    return concatenated

def process_pose_for_control(pose_image):
    """
    Process pose image to ensure maximum contrast and clarity for control
    """
    if pose_image is None:
        return None
    
    # Convert to grayscale first
    gray = pose_image.convert("L")
    
    # Apply strong edge detection
    edges = gray.filter(ImageFilter.FIND_EDGES)
    edges = edges.filter(ImageFilter.EDGE_ENHANCE_MORE)
    
    # Maximize contrast
    edges = ImageOps.autocontrast(edges, cutoff=2)
    
    # Convert to pure black and white
    threshold = 128
    edges = edges.point(lambda x: 255 if x > threshold else 0, mode='1')
    
    # Convert back to RGB with inverted colors (black lines on white)
    edges = edges.convert("RGB")
    edges = ImageOps.invert(edges)
    
    return edges

@spaces.GPU(duration=60)
def generate_pose_transfer(
    reference_image,
    pose_image,
    prompt="",
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    guidance_scale=7.5,  # Increased for better pose adherence
    num_inference_steps=28,
    lora_scale=1.0,
    enhance_pose=False,
    progress=gr.Progress(track_tqdm=True)
):
    """
    Main generation function using RefControl approach.
    """
    
    if pipe is None:
        return None, 0, "Model not loaded. Please check HF_TOKEN and restart the Space"
    
    if reference_image is None or pose_image is None:
        raise gr.Error("Please upload both reference and pose images")
    
    # Randomize seed if requested
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Enhance pose if requested
    if enhance_pose:
        pose_image = process_pose_for_control(pose_image)
    
    # Prepare concatenated input with fixed size
    concatenated_input = prepare_images_for_kontext(reference_image, pose_image, target_size=512)
    
    if concatenated_input is None:
        raise gr.Error("Failed to process images")
    
    # Ensure dimensions are model-compatible
    width, height = concatenated_input.size
    # Round to nearest 64 pixels for stability
    width = (width // 64) * 64
    height = (height // 64) * 64
    
    # Limit maximum size to prevent memory issues
    max_size = 1024
    if width > max_size:
        ratio = max_size / width
        width = max_size
        height = int(height * ratio)
        height = (height // 64) * 64
    
    if height > max_size:
        ratio = max_size / height
        height = max_size
        width = int(width * ratio)
        width = (width // 64) * 64
    
    # Resize if needed
    if (width, height) != concatenated_input.size:
        concatenated_input = concatenated_input.resize((width, height), Image.LANCZOS)
    
    # Construct prompt with trigger word - CRITICAL FOR POSE CONTROL
    # The prompt must explicitly describe the pose transfer task
    base_instruction = f"{TRIGGER_WORD}, A photo composed of two images side by side. Left: reference person. Right: target pose skeleton. Task: Generate the person from the left image in the exact pose shown in the right image"
    
    if prompt:
        full_prompt = f"{base_instruction}. Additional details: {prompt}"
    else:
        full_prompt = base_instruction
    
    # Add strong pose control instructions
    full_prompt += ". IMPORTANT: Strictly follow the pose/skeleton from the right image while preserving the identity, clothing, and appearance from the left image. The output should show ONLY the transformed person, not the side-by-side layout."
    
    # Set generator for reproducibility
    generator = torch.Generator("cuda").manual_seed(seed)
    
    try:
        # Check if we have LoRA capabilities
        has_lora = hasattr(pipe, 'set_adapters') and "LoRA" in MODEL_STATUS
        
        # Set LoRA with higher strength for better pose control
        if has_lora:
            try:
                # Increase LoRA strength for pose control
                actual_lora_scale = lora_scale * 1.5  # Boost LoRA influence
                pipe.set_adapters(["refcontrol"], adapter_weights=[actual_lora_scale])
                print(f"LoRA adapter set with boosted strength: {actual_lora_scale}")
            except Exception as e:
                print(f"LoRA adapter not set: {e}")
        
        print(f"Generating with size: {width}x{height}")
        print(f"Prompt: {full_prompt[:200]}...")
        
        # Generate image with stronger pose control
        with torch.cuda.amp.autocast(dtype=torch.bfloat16):
            if "Kontext" in MODEL_STATUS:
                # Use Kontext pipeline - removed unsupported controlnet_conditioning_scale
                result = pipe(
                    image=concatenated_input,
                    prompt=full_prompt,
                    negative_prompt=negative_prompt if negative_prompt else "blurry, distorted, deformed, wrong pose, incorrect posture",
                    guidance_scale=guidance_scale,  # Higher for better control
                    num_inference_steps=num_inference_steps,
                    generator=generator,
                    width=width,
                    height=height,
                ).images[0]
            else:
                # Use standard FLUX pipeline
                result = pipe(
                    prompt=full_prompt,
                    negative_prompt=negative_prompt if negative_prompt else "",
                    image=concatenated_input,
                    guidance_scale=guidance_scale,
                    num_inference_steps=num_inference_steps,
                    generator=generator,
                    strength=0.85,
                ).images[0]
        
        print("Generation successful!")
        return result, seed, concatenated_input
        
    except RuntimeError as e:
        if "out of memory" in str(e).lower():
            raise gr.Error("GPU out of memory. Try reducing image size or inference steps.")
        else:
            raise gr.Error(f"Generation failed: {str(e)}")
    except Exception as e:
        print(f"Error details: {e}")
        raise gr.Error(f"Generation failed: {str(e)}")

# CSS styling
css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}
.header {
    text-align: center;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 20px;
    border-radius: 12px;
    margin-bottom: 20px;
}
.header h1 {
    color: white;
    margin: 0;
    font-size: 2em;
}
.status-box {
    padding: 10px;
    border-radius: 8px;
    margin: 10px 0;
    font-weight: bold;
    text-align: center;
}
.input-image {
    border: 2px solid #e0e0e0;
    border-radius: 8px;
    overflow: hidden;
}
.result-image {
    border: 3px solid #4CAF50;
    border-radius: 8px;
    overflow: hidden;
}
.info-box {
    background: #f0f0f0;
    padding: 10px;
    border-radius: 8px;
    margin: 10px 0;
}
"""

# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    
    with gr.Column(elem_id="col-container"):
        # Header
        gr.HTML("""
        <div class="header">
            <h1>🎭 FLUX Pose Transfer System</h1>
            <p style="color: white;">Transfer poses while preserving identity</p>
        </div>
        """)
        
        # Model status
        status_color = "#d4edda" if "βœ…" in MODEL_STATUS else "#fff3cd" if "⚠️" in MODEL_STATUS else "#f8d7da"
        gr.HTML(f"""
        <div class="status-box" style="background: {status_color};">
            {MODEL_STATUS}
        </div>
        """)
        
        # Authentication check
        if not HF_TOKEN:
            gr.Markdown("""
            ### πŸ” Authentication Required
            
            To use this Space with full features:
            1. Go to **Settings** β†’ **Variables and secrets**
            2. Add `HF_TOKEN` with your Hugging Face token
            3. Restart the Space
            
            Or click below to sign in:
            """)
            gr.LoginButton("Sign in with Hugging Face", size="lg")
        
        # Info box for PEFT requirement
        if "PEFT required" in MODEL_STATUS:
            gr.HTML("""
            <div class="info-box">
                <b>Note:</b> For full LoRA support, PEFT library is required. 
                Add <code>peft</code> to your requirements.txt file.
            </div>
            """)
        
        # Main interface
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### πŸ“₯ Input Images")
                
                # Reference image
                reference_image = gr.Image(
                    label="Reference Image (Subject to transform)",
                    type="pil",
                    elem_classes=["input-image"],
                    height=300
                )
                
                # Pose image
                pose_image = gr.Image(
                    label="Pose Control (Line art or skeleton)",
                    type="pil",
                    elem_classes=["input-image"],
                    height=300
                )
                
                # Pose extraction tool
                with gr.Accordion("πŸ”§ Extract Pose from Image", open=False):
                    extract_source = gr.Image(
                        label="Source image for pose extraction",
                        type="pil",
                        height=200
                    )
                    extract_btn = gr.Button("Extract Pose", size="sm")
                
                # Prompts
                prompt = gr.Textbox(
                    label=f"Prompt ('{TRIGGER_WORD}' added automatically)",
                    placeholder="e.g., wearing elegant dress, professional photography",
                    lines=2
                )
                
                negative_prompt = gr.Textbox(
                    label="Negative Prompt (optional)",
                    placeholder="e.g., blurry, low quality, distorted",
                    lines=1,
                    value="blurry, low quality, distorted, deformed"
                )
                
                # Generate button
                generate_btn = gr.Button(
                    "🎨 Generate Pose Transfer",
                    variant="primary",
                    size="lg"
                )
                
                # Advanced settings
                with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                    with gr.Row():
                        seed = gr.Slider(
                            label="Seed",
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=42
                        )
                        randomize_seed = gr.Checkbox(
                            label="Randomize",
                            value=True
                        )
                    
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=5.0,
                        maximum=15.0,
                        step=0.5,
                        value=7.5,
                        info="Higher = stricter pose following (7-10 recommended)"
                    )
                    
                    num_inference_steps = gr.Slider(
                        label="Inference Steps",
                        minimum=20,
                        maximum=50,
                        step=1,
                        value=30
                    )
                    
                    if "LoRA" in MODEL_STATUS:
                        lora_scale = gr.Slider(
                            label="LoRA Strength",
                            minimum=0.5,
                            maximum=2.0,
                            step=0.1,
                            value=1.2,
                            info="RefControl LoRA influence (1.0-1.5 recommended)"
                        )
                    else:
                        lora_scale = gr.Slider(
                            label="LoRA Strength (not available)",
                            minimum=0.0,
                            maximum=2.0,
                            step=0.1,
                            value=1.0,
                            interactive=False
                        )
                    
                    enhance_pose = gr.Checkbox(
                        label="Auto-enhance pose edges",
                        value=False
                    )
            
            with gr.Column(scale=1):
                gr.Markdown("### πŸ–ΌοΈ Result")
                
                # Result image
                result_image = gr.Image(
                    label="Generated Image",
                    elem_classes=["result-image"],
                    interactive=False,
                    height=500
                )
                
                # Seed display
                seed_used = gr.Number(
                    label="Seed Used",
                    interactive=False
                )
                
                # Debug view
                with gr.Accordion("πŸ” Debug View", open=False):
                    concat_preview = gr.Image(
                        label="Input Concatenation (Reference | Pose)",
                        height=200
                    )
                
                # Action buttons
                with gr.Row():
                    reuse_ref_btn = gr.Button("♻️ Use as Reference", size="sm")
                    reuse_pose_btn = gr.Button("πŸ“ Extract Pose", size="sm")
                    clear_btn = gr.Button("πŸ—‘οΈ Clear All", size="sm")
        
        # Examples
        gr.Markdown("### πŸ’‘ Example Prompts")
        gr.Examples(
            examples=[
                ["professional portrait, studio lighting"],
                ["wearing red dress, outdoor garden"],
                ["business attire, office setting"],
                ["casual streetwear, urban background"],
                ["athletic wear, gym environment"],
            ],
            inputs=[prompt]
        )
        
        # Instructions
        with gr.Accordion("πŸ“– Instructions", open=False):
            gr.Markdown(f"""
            ## How to Use:
            
            1. **Upload Reference Image**: The person whose appearance you want to keep
            2. **Upload Pose Image**: Line art or skeleton pose to follow
            3. **Add Prompt** (optional): Describe additional details
            4. **Click Generate**: Create your pose-transferred image
            
            ## Model Information:
            - **Current Model**: {MODEL_STATUS}
            - **Trigger Word**: `{TRIGGER_WORD}` (added automatically)
            
            ## Tips:
            - Use clear, high-contrast pose images
            - Black lines on white background work best for poses
            - Adjust guidance scale for pose adherence strength
            - Higher steps = better quality but slower
            
            ## Requirements:
            - **HF_TOKEN**: Required for model access
            - **peft**: Required for LoRA support (add to requirements.txt)
            """)
    
    # Event handlers
    generate_btn.click(
        fn=generate_pose_transfer,
        inputs=[
            reference_image,
            pose_image,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            num_inference_steps,
            lora_scale,
            enhance_pose
        ],
        outputs=[result_image, seed_used, concat_preview]
    )
    
    extract_btn.click(
        fn=process_pose_for_control,
        inputs=[extract_source],
        outputs=[pose_image]
    )
    
    reuse_ref_btn.click(
        fn=lambda x: x,
        inputs=[result_image],
        outputs=[reference_image]
    )
    
    reuse_pose_btn.click(
        fn=process_pose_for_control,
        inputs=[result_image],
        outputs=[pose_image]
    )
    
    clear_btn.click(
        fn=lambda: [None, None, "", "blurry, low quality, distorted, deformed", 42, None, None],
        outputs=[
            reference_image,
            pose_image,
            prompt,
            negative_prompt,
            seed_used,
            result_image,
            concat_preview
        ]
    )

# Launch the app
if __name__ == "__main__":
    demo.queue()
    demo.launch()