Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ import os
|
|
| 6 |
import spaces
|
| 7 |
from PIL import Image, ImageOps, ImageFilter
|
| 8 |
from diffusers import FluxPipeline, DiffusionPipeline
|
| 9 |
-
from diffusers.loaders import LoraLoaderMixin
|
| 10 |
import requests
|
| 11 |
from io import BytesIO
|
| 12 |
|
|
@@ -16,51 +15,70 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
| 16 |
|
| 17 |
# Model configuration
|
| 18 |
KONTEXT_MODEL = "black-forest-labs/FLUX.1-Kontext-dev"
|
|
|
|
| 19 |
LORA_MODEL = "thedeoxen/refcontrol-flux-kontext-reference-pose-lora"
|
| 20 |
TRIGGER_WORD = "refcontrolpose"
|
| 21 |
|
| 22 |
-
# Initialize pipeline
|
| 23 |
print("Loading models...")
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
pipe = FluxKontextPipeline.from_pretrained(
|
| 30 |
-
KONTEXT_MODEL,
|
| 31 |
-
torch_dtype=torch.bfloat16,
|
| 32 |
-
use_auth_token=HF_TOKEN
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
# Load the RefControl LoRA
|
| 36 |
-
pipe.load_lora_weights(
|
| 37 |
-
LORA_MODEL,
|
| 38 |
-
adapter_name="refcontrol",
|
| 39 |
-
use_auth_token=HF_TOKEN
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# Move to GPU
|
| 43 |
-
pipe = pipe.to("cuda")
|
| 44 |
-
|
| 45 |
-
MODEL_STATUS = "β
Flux Kontext + RefControl LoRA loaded successfully"
|
| 46 |
-
print(MODEL_STATUS)
|
| 47 |
-
|
| 48 |
-
else:
|
| 49 |
-
raise ValueError("HF_TOKEN not found in environment variables")
|
| 50 |
-
|
| 51 |
-
except Exception as e:
|
| 52 |
-
print(f"Error loading models: {e}")
|
| 53 |
-
# Fallback to base model without LoRA
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
pipe = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def prepare_images_for_kontext(reference_image, pose_image, target_size=768):
|
| 66 |
"""
|
|
@@ -140,11 +158,11 @@ def generate_pose_transfer(
|
|
| 140 |
progress=gr.Progress(track_tqdm=True)
|
| 141 |
):
|
| 142 |
"""
|
| 143 |
-
Main generation function using RefControl
|
| 144 |
"""
|
| 145 |
|
| 146 |
if pipe is None:
|
| 147 |
-
return None, 0, "Model not loaded. Please check HF_TOKEN"
|
| 148 |
|
| 149 |
if reference_image is None or pose_image is None:
|
| 150 |
raise gr.Error("Please upload both reference and pose images")
|
|
@@ -176,23 +194,40 @@ def generate_pose_transfer(
|
|
| 176 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 177 |
|
| 178 |
try:
|
| 179 |
-
#
|
|
|
|
|
|
|
| 180 |
with torch.autocast("cuda"):
|
| 181 |
-
if
|
| 182 |
-
#
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
# Generate image
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
return result, seed, concatenated_input
|
| 198 |
|
|
@@ -215,12 +250,14 @@ css = """
|
|
| 215 |
.header h1 {
|
| 216 |
color: white;
|
| 217 |
margin: 0;
|
|
|
|
| 218 |
}
|
| 219 |
.status-box {
|
| 220 |
padding: 10px;
|
| 221 |
border-radius: 8px;
|
| 222 |
margin: 10px 0;
|
| 223 |
font-weight: bold;
|
|
|
|
| 224 |
}
|
| 225 |
.input-image {
|
| 226 |
border: 2px solid #e0e0e0;
|
|
@@ -232,40 +269,57 @@ css = """
|
|
| 232 |
border-radius: 8px;
|
| 233 |
overflow: hidden;
|
| 234 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
"""
|
| 236 |
|
| 237 |
# Create Gradio interface
|
| 238 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 239 |
|
| 240 |
with gr.Column(elem_id="col-container"):
|
| 241 |
-
# Header
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
""")
|
| 257 |
|
| 258 |
-
# Authentication
|
| 259 |
if not HF_TOKEN:
|
| 260 |
gr.Markdown("""
|
| 261 |
### π Authentication Required
|
| 262 |
-
|
| 263 |
-
|
|
|
|
| 264 |
2. Add `HF_TOKEN` with your Hugging Face token
|
| 265 |
3. Restart the Space
|
|
|
|
|
|
|
| 266 |
""")
|
| 267 |
gr.LoginButton("Sign in with Hugging Face", size="lg")
|
| 268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
# Main interface
|
| 270 |
with gr.Row():
|
| 271 |
with gr.Column(scale=1):
|
|
@@ -298,15 +352,16 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 298 |
|
| 299 |
# Prompts
|
| 300 |
prompt = gr.Textbox(
|
| 301 |
-
label=f"Prompt (
|
| 302 |
placeholder="e.g., wearing elegant dress, professional photography",
|
| 303 |
lines=2
|
| 304 |
)
|
| 305 |
|
| 306 |
negative_prompt = gr.Textbox(
|
| 307 |
-
label="Negative Prompt",
|
| 308 |
placeholder="e.g., blurry, low quality, distorted",
|
| 309 |
-
lines=
|
|
|
|
| 310 |
)
|
| 311 |
|
| 312 |
# Generate button
|
|
@@ -348,14 +403,24 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 348 |
value=28
|
| 349 |
)
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
enhance_pose = gr.Checkbox(
|
| 361 |
label="Auto-enhance pose edges",
|
|
@@ -363,7 +428,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 363 |
)
|
| 364 |
|
| 365 |
with gr.Column(scale=1):
|
| 366 |
-
gr.Markdown("### πΌοΈ
|
| 367 |
|
| 368 |
# Result image
|
| 369 |
result_image = gr.Image(
|
|
@@ -373,12 +438,11 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 373 |
height=500
|
| 374 |
)
|
| 375 |
|
| 376 |
-
#
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
)
|
| 382 |
|
| 383 |
# Debug view
|
| 384 |
with gr.Accordion("π Debug View", open=False):
|
|
@@ -387,39 +451,48 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 387 |
height=200
|
| 388 |
)
|
| 389 |
|
| 390 |
-
#
|
| 391 |
with gr.Row():
|
| 392 |
reuse_ref_btn = gr.Button("β»οΈ Use as Reference", size="sm")
|
| 393 |
-
reuse_pose_btn = gr.Button("π Extract
|
| 394 |
clear_btn = gr.Button("ποΈ Clear All", size="sm")
|
| 395 |
|
| 396 |
# Examples
|
| 397 |
gr.Markdown("### π‘ Example Prompts")
|
| 398 |
gr.Examples(
|
| 399 |
examples=[
|
| 400 |
-
["professional portrait, studio lighting
|
| 401 |
-
["wearing red dress, outdoor garden
|
| 402 |
-
["business attire,
|
| 403 |
["casual streetwear, urban background"],
|
| 404 |
-
["athletic wear,
|
| 405 |
-
["elegant evening gown, luxury setting"],
|
| 406 |
],
|
| 407 |
inputs=[prompt]
|
| 408 |
)
|
| 409 |
|
| 410 |
# Instructions
|
| 411 |
-
with gr.Accordion("π
|
| 412 |
-
gr.Markdown("""
|
| 413 |
-
|
|
|
|
|
|
|
| 414 |
2. **Upload Pose Image**: Line art or skeleton pose to follow
|
| 415 |
-
3. **
|
| 416 |
-
4. **Click Generate**:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
-
|
| 419 |
-
-
|
| 420 |
-
-
|
| 421 |
-
- Adjust LoRA strength to balance identity vs pose adherence
|
| 422 |
-
- Higher guidance scale = stricter pose following
|
| 423 |
""")
|
| 424 |
|
| 425 |
# Event handlers
|
|
@@ -459,7 +532,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 459 |
)
|
| 460 |
|
| 461 |
clear_btn.click(
|
| 462 |
-
fn=lambda: [None, None, "", "", 42, None, None],
|
| 463 |
outputs=[
|
| 464 |
reference_image,
|
| 465 |
pose_image,
|
|
|
|
| 6 |
import spaces
|
| 7 |
from PIL import Image, ImageOps, ImageFilter
|
| 8 |
from diffusers import FluxPipeline, DiffusionPipeline
|
|
|
|
| 9 |
import requests
|
| 10 |
from io import BytesIO
|
| 11 |
|
|
|
|
| 15 |
|
| 16 |
# Model configuration
|
| 17 |
KONTEXT_MODEL = "black-forest-labs/FLUX.1-Kontext-dev"
|
| 18 |
+
FALLBACK_MODEL = "black-forest-labs/FLUX.1-dev"
|
| 19 |
LORA_MODEL = "thedeoxen/refcontrol-flux-kontext-reference-pose-lora"
|
| 20 |
TRIGGER_WORD = "refcontrolpose"
|
| 21 |
|
| 22 |
+
# Initialize pipeline
|
| 23 |
print("Loading models...")
|
| 24 |
|
| 25 |
+
def load_pipeline():
|
| 26 |
+
"""Load the appropriate pipeline based on availability"""
|
| 27 |
+
global pipe, MODEL_STATUS
|
| 28 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
+
# First, try to import necessary libraries
|
| 31 |
+
try:
|
| 32 |
+
from diffusers import FluxKontextPipeline
|
| 33 |
+
import peft
|
| 34 |
+
print("PEFT library found")
|
| 35 |
+
use_kontext = True
|
| 36 |
+
except ImportError:
|
| 37 |
+
print("FluxKontextPipeline or PEFT not available, using fallback")
|
| 38 |
+
use_kontext = False
|
| 39 |
+
|
| 40 |
+
if use_kontext and HF_TOKEN:
|
| 41 |
+
# Try to load Kontext model
|
| 42 |
+
pipe = FluxKontextPipeline.from_pretrained(
|
| 43 |
+
KONTEXT_MODEL,
|
| 44 |
+
torch_dtype=torch.bfloat16,
|
| 45 |
+
token=HF_TOKEN
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Try to load LoRA if PEFT is available
|
| 49 |
+
try:
|
| 50 |
+
pipe.load_lora_weights(
|
| 51 |
+
LORA_MODEL,
|
| 52 |
+
adapter_name="refcontrol",
|
| 53 |
+
token=HF_TOKEN
|
| 54 |
+
)
|
| 55 |
+
MODEL_STATUS = "β
Flux Kontext + RefControl LoRA loaded"
|
| 56 |
+
except Exception as e:
|
| 57 |
+
print(f"Could not load LoRA: {e}")
|
| 58 |
+
MODEL_STATUS = "β οΈ Flux Kontext loaded (without LoRA - PEFT required)"
|
| 59 |
+
|
| 60 |
+
pipe = pipe.to("cuda")
|
| 61 |
+
|
| 62 |
+
else:
|
| 63 |
+
# Fallback to standard FLUX
|
| 64 |
+
pipe = FluxPipeline.from_pretrained(
|
| 65 |
+
FALLBACK_MODEL,
|
| 66 |
+
torch_dtype=torch.bfloat16,
|
| 67 |
+
token=HF_TOKEN if HF_TOKEN else True
|
| 68 |
+
)
|
| 69 |
+
pipe = pipe.to("cuda")
|
| 70 |
+
MODEL_STATUS = "β οΈ Using FLUX.1-dev (fallback mode)"
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Error loading models: {e}")
|
| 74 |
+
MODEL_STATUS = f"β Error: {str(e)}"
|
| 75 |
pipe = None
|
| 76 |
+
|
| 77 |
+
return pipe, MODEL_STATUS
|
| 78 |
+
|
| 79 |
+
# Load the pipeline
|
| 80 |
+
pipe, MODEL_STATUS = load_pipeline()
|
| 81 |
+
print(MODEL_STATUS)
|
| 82 |
|
| 83 |
def prepare_images_for_kontext(reference_image, pose_image, target_size=768):
|
| 84 |
"""
|
|
|
|
| 158 |
progress=gr.Progress(track_tqdm=True)
|
| 159 |
):
|
| 160 |
"""
|
| 161 |
+
Main generation function using RefControl approach.
|
| 162 |
"""
|
| 163 |
|
| 164 |
if pipe is None:
|
| 165 |
+
return None, 0, "Model not loaded. Please check HF_TOKEN and restart the Space"
|
| 166 |
|
| 167 |
if reference_image is None or pose_image is None:
|
| 168 |
raise gr.Error("Please upload both reference and pose images")
|
|
|
|
| 194 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 195 |
|
| 196 |
try:
|
| 197 |
+
# Check if we have LoRA capabilities
|
| 198 |
+
has_lora = hasattr(pipe, 'set_adapters') and "RefControl" in MODEL_STATUS
|
| 199 |
+
|
| 200 |
with torch.autocast("cuda"):
|
| 201 |
+
if has_lora:
|
| 202 |
+
# Try to set LoRA adapter strength
|
| 203 |
+
try:
|
| 204 |
+
pipe.set_adapters(["refcontrol"], adapter_weights=[lora_scale])
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"Could not set LoRA adapter: {e}")
|
| 207 |
|
| 208 |
+
# Generate image based on pipeline type
|
| 209 |
+
if "Kontext" in MODEL_STATUS:
|
| 210 |
+
# Use Kontext pipeline
|
| 211 |
+
result = pipe(
|
| 212 |
+
image=concatenated_input,
|
| 213 |
+
prompt=full_prompt,
|
| 214 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
| 215 |
+
guidance_scale=guidance_scale,
|
| 216 |
+
num_inference_steps=num_inference_steps,
|
| 217 |
+
generator=generator,
|
| 218 |
+
width=concatenated_input.width,
|
| 219 |
+
height=concatenated_input.height,
|
| 220 |
+
).images[0]
|
| 221 |
+
else:
|
| 222 |
+
# Use standard FLUX pipeline (image-to-image)
|
| 223 |
+
result = pipe(
|
| 224 |
+
prompt=full_prompt,
|
| 225 |
+
image=concatenated_input,
|
| 226 |
+
guidance_scale=guidance_scale,
|
| 227 |
+
num_inference_steps=num_inference_steps,
|
| 228 |
+
generator=generator,
|
| 229 |
+
strength=0.85, # For img2img mode
|
| 230 |
+
).images[0]
|
| 231 |
|
| 232 |
return result, seed, concatenated_input
|
| 233 |
|
|
|
|
| 250 |
.header h1 {
|
| 251 |
color: white;
|
| 252 |
margin: 0;
|
| 253 |
+
font-size: 2em;
|
| 254 |
}
|
| 255 |
.status-box {
|
| 256 |
padding: 10px;
|
| 257 |
border-radius: 8px;
|
| 258 |
margin: 10px 0;
|
| 259 |
font-weight: bold;
|
| 260 |
+
text-align: center;
|
| 261 |
}
|
| 262 |
.input-image {
|
| 263 |
border: 2px solid #e0e0e0;
|
|
|
|
| 269 |
border-radius: 8px;
|
| 270 |
overflow: hidden;
|
| 271 |
}
|
| 272 |
+
.info-box {
|
| 273 |
+
background: #f0f0f0;
|
| 274 |
+
padding: 10px;
|
| 275 |
+
border-radius: 8px;
|
| 276 |
+
margin: 10px 0;
|
| 277 |
+
}
|
| 278 |
"""
|
| 279 |
|
| 280 |
# Create Gradio interface
|
| 281 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 282 |
|
| 283 |
with gr.Column(elem_id="col-container"):
|
| 284 |
+
# Header
|
| 285 |
+
gr.HTML("""
|
| 286 |
+
<div class="header">
|
| 287 |
+
<h1>π FLUX Pose Transfer System</h1>
|
| 288 |
+
<p style="color: white;">Transfer poses while preserving identity</p>
|
| 289 |
+
</div>
|
| 290 |
+
""")
|
| 291 |
+
|
| 292 |
+
# Model status
|
| 293 |
+
status_color = "#d4edda" if "β
" in MODEL_STATUS else "#fff3cd" if "β οΈ" in MODEL_STATUS else "#f8d7da"
|
| 294 |
+
gr.HTML(f"""
|
| 295 |
+
<div class="status-box" style="background: {status_color};">
|
| 296 |
+
{MODEL_STATUS}
|
| 297 |
+
</div>
|
| 298 |
+
""")
|
|
|
|
| 299 |
|
| 300 |
+
# Authentication check
|
| 301 |
if not HF_TOKEN:
|
| 302 |
gr.Markdown("""
|
| 303 |
### π Authentication Required
|
| 304 |
+
|
| 305 |
+
To use this Space with full features:
|
| 306 |
+
1. Go to **Settings** β **Variables and secrets**
|
| 307 |
2. Add `HF_TOKEN` with your Hugging Face token
|
| 308 |
3. Restart the Space
|
| 309 |
+
|
| 310 |
+
Or click below to sign in:
|
| 311 |
""")
|
| 312 |
gr.LoginButton("Sign in with Hugging Face", size="lg")
|
| 313 |
|
| 314 |
+
# Info box for PEFT requirement
|
| 315 |
+
if "PEFT required" in MODEL_STATUS:
|
| 316 |
+
gr.HTML("""
|
| 317 |
+
<div class="info-box">
|
| 318 |
+
<b>Note:</b> For full LoRA support, PEFT library is required.
|
| 319 |
+
Add <code>peft</code> to your requirements.txt file.
|
| 320 |
+
</div>
|
| 321 |
+
""")
|
| 322 |
+
|
| 323 |
# Main interface
|
| 324 |
with gr.Row():
|
| 325 |
with gr.Column(scale=1):
|
|
|
|
| 352 |
|
| 353 |
# Prompts
|
| 354 |
prompt = gr.Textbox(
|
| 355 |
+
label=f"Prompt ('{TRIGGER_WORD}' added automatically)",
|
| 356 |
placeholder="e.g., wearing elegant dress, professional photography",
|
| 357 |
lines=2
|
| 358 |
)
|
| 359 |
|
| 360 |
negative_prompt = gr.Textbox(
|
| 361 |
+
label="Negative Prompt (optional)",
|
| 362 |
placeholder="e.g., blurry, low quality, distorted",
|
| 363 |
+
lines=1,
|
| 364 |
+
value="blurry, low quality, distorted, deformed"
|
| 365 |
)
|
| 366 |
|
| 367 |
# Generate button
|
|
|
|
| 403 |
value=28
|
| 404 |
)
|
| 405 |
|
| 406 |
+
if "LoRA" in MODEL_STATUS:
|
| 407 |
+
lora_scale = gr.Slider(
|
| 408 |
+
label="LoRA Strength",
|
| 409 |
+
minimum=0.0,
|
| 410 |
+
maximum=2.0,
|
| 411 |
+
step=0.1,
|
| 412 |
+
value=1.0,
|
| 413 |
+
info="RefControl LoRA influence"
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
lora_scale = gr.Slider(
|
| 417 |
+
label="LoRA Strength (not available)",
|
| 418 |
+
minimum=0.0,
|
| 419 |
+
maximum=2.0,
|
| 420 |
+
step=0.1,
|
| 421 |
+
value=1.0,
|
| 422 |
+
interactive=False
|
| 423 |
+
)
|
| 424 |
|
| 425 |
enhance_pose = gr.Checkbox(
|
| 426 |
label="Auto-enhance pose edges",
|
|
|
|
| 428 |
)
|
| 429 |
|
| 430 |
with gr.Column(scale=1):
|
| 431 |
+
gr.Markdown("### πΌοΈ Result")
|
| 432 |
|
| 433 |
# Result image
|
| 434 |
result_image = gr.Image(
|
|
|
|
| 438 |
height=500
|
| 439 |
)
|
| 440 |
|
| 441 |
+
# Seed display
|
| 442 |
+
seed_used = gr.Number(
|
| 443 |
+
label="Seed Used",
|
| 444 |
+
interactive=False
|
| 445 |
+
)
|
|
|
|
| 446 |
|
| 447 |
# Debug view
|
| 448 |
with gr.Accordion("π Debug View", open=False):
|
|
|
|
| 451 |
height=200
|
| 452 |
)
|
| 453 |
|
| 454 |
+
# Action buttons
|
| 455 |
with gr.Row():
|
| 456 |
reuse_ref_btn = gr.Button("β»οΈ Use as Reference", size="sm")
|
| 457 |
+
reuse_pose_btn = gr.Button("π Extract Pose", size="sm")
|
| 458 |
clear_btn = gr.Button("ποΈ Clear All", size="sm")
|
| 459 |
|
| 460 |
# Examples
|
| 461 |
gr.Markdown("### π‘ Example Prompts")
|
| 462 |
gr.Examples(
|
| 463 |
examples=[
|
| 464 |
+
["professional portrait, studio lighting"],
|
| 465 |
+
["wearing red dress, outdoor garden"],
|
| 466 |
+
["business attire, office setting"],
|
| 467 |
["casual streetwear, urban background"],
|
| 468 |
+
["athletic wear, gym environment"],
|
|
|
|
| 469 |
],
|
| 470 |
inputs=[prompt]
|
| 471 |
)
|
| 472 |
|
| 473 |
# Instructions
|
| 474 |
+
with gr.Accordion("π Instructions", open=False):
|
| 475 |
+
gr.Markdown(f"""
|
| 476 |
+
## How to Use:
|
| 477 |
+
|
| 478 |
+
1. **Upload Reference Image**: The person whose appearance you want to keep
|
| 479 |
2. **Upload Pose Image**: Line art or skeleton pose to follow
|
| 480 |
+
3. **Add Prompt** (optional): Describe additional details
|
| 481 |
+
4. **Click Generate**: Create your pose-transferred image
|
| 482 |
+
|
| 483 |
+
## Model Information:
|
| 484 |
+
- **Current Model**: {MODEL_STATUS}
|
| 485 |
+
- **Trigger Word**: `{TRIGGER_WORD}` (added automatically)
|
| 486 |
+
|
| 487 |
+
## Tips:
|
| 488 |
+
- Use clear, high-contrast pose images
|
| 489 |
+
- Black lines on white background work best for poses
|
| 490 |
+
- Adjust guidance scale for pose adherence strength
|
| 491 |
+
- Higher steps = better quality but slower
|
| 492 |
|
| 493 |
+
## Requirements:
|
| 494 |
+
- **HF_TOKEN**: Required for model access
|
| 495 |
+
- **peft**: Required for LoRA support (add to requirements.txt)
|
|
|
|
|
|
|
| 496 |
""")
|
| 497 |
|
| 498 |
# Event handlers
|
|
|
|
| 532 |
)
|
| 533 |
|
| 534 |
clear_btn.click(
|
| 535 |
+
fn=lambda: [None, None, "", "blurry, low quality, distorted, deformed", 42, None, None],
|
| 536 |
outputs=[
|
| 537 |
reference_image,
|
| 538 |
pose_image,
|