File size: 18,055 Bytes
5b8270b cd76271 5b8270b cd76271 5b8270b cd76271 1226094 cd76271 ea808ab 1226094 cd76271 5b8270b 1226094 cd76271 1226094 cd76271 1226094 b22198b cd76271 be24378 cd76271 be24378 b22198b be24378 cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b be24378 cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 be24378 cd76271 be24378 cd76271 be24378 cd76271 be24378 cd76271 b22198b cd76271 b22198b 1226094 b22198b cd76271 1226094 cd76271 b22198b cd76271 5b8270b cd76271 5b8270b be24378 cd76271 be24378 cd76271 be24378 b22198b cd76271 be24378 cd76271 b22198b cd76271 b22198b cd76271 5b8270b cd76271 031d0a1 cd76271 b22198b cd76271 1226094 cd76271 1226094 cd76271 1226094 cd76271 5b8270b b22198b 5b8270b cd76271 1226094 cd76271 1226094 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 5b8270b 1226094 5b8270b b22198b cd76271 5b8270b 1226094 b22198b 1226094 cd76271 1226094 cd76271 1226094 cd76271 b22198b 1226094 cd76271 5b8270b b22198b cd76271 be24378 cd76271 b22198b cd76271 b22198b cd76271 b22198b 66818c2 cd76271 b22198b cd76271 b22198b 1226094 cd76271 b22198b cd76271 1226094 cd76271 1226094 cd76271 b22198b cd76271 b22198b cd76271 097eb9b b22198b cd76271 b22198b 097eb9b cd76271 1226094 cd76271 b22198b 1226094 b22198b cd76271 b22198b cd76271 b22198b 1226094 cd76271 b22198b 1226094 b22198b cd76271 1226094 cd76271 097eb9b b22198b cd76271 b22198b 1226094 cd76271 1226094 b22198b cd76271 b22198b cd76271 1226094 cd76271 1226094 cd76271 1226094 cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b cd76271 b22198b 5b8270b be24378 cd76271 b22198b cd76271 1226094 cd76271 e982174 5b8270b b22198b cd76271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import gradio as gr
import numpy as np
import torch
import random
import os
import spaces
from PIL import Image, ImageOps, ImageFilter
from diffusers import FluxPipeline, DiffusionPipeline
import requests
from io import BytesIO
# Constants
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.getenv("HF_TOKEN")
# Model configuration
KONTEXT_MODEL = "black-forest-labs/FLUX.1-Kontext-dev"
FALLBACK_MODEL = "black-forest-labs/FLUX.1-dev"
LORA_MODEL = "thedeoxen/refcontrol-flux-kontext-reference-pose-lora"
TRIGGER_WORD = "refcontrolpose"
# Initialize pipeline
print("Loading models...")
def load_pipeline():
"""Load the appropriate pipeline based on availability"""
global pipe, MODEL_STATUS
try:
# First, try to import necessary libraries
try:
from diffusers import FluxKontextPipeline
import peft
print("PEFT library found")
use_kontext = True
except ImportError:
print("FluxKontextPipeline or PEFT not available, using fallback")
use_kontext = False
if use_kontext and HF_TOKEN:
# Try to load Kontext model
pipe = FluxKontextPipeline.from_pretrained(
KONTEXT_MODEL,
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
# Try to load LoRA if PEFT is available
try:
pipe.load_lora_weights(
LORA_MODEL,
adapter_name="refcontrol",
token=HF_TOKEN
)
MODEL_STATUS = "β
Flux Kontext + RefControl LoRA loaded"
except Exception as e:
print(f"Could not load LoRA: {e}")
MODEL_STATUS = "β οΈ Flux Kontext loaded (without LoRA - PEFT required)"
pipe = pipe.to("cuda")
else:
# Fallback to standard FLUX
pipe = FluxPipeline.from_pretrained(
FALLBACK_MODEL,
torch_dtype=torch.bfloat16,
token=HF_TOKEN if HF_TOKEN else True
)
pipe = pipe.to("cuda")
MODEL_STATUS = "β οΈ Using FLUX.1-dev (fallback mode)"
except Exception as e:
print(f"Error loading models: {e}")
MODEL_STATUS = f"β Error: {str(e)}"
pipe = None
return pipe, MODEL_STATUS
# Load the pipeline
pipe, MODEL_STATUS = load_pipeline()
print(MODEL_STATUS)
def prepare_images_for_kontext(reference_image, pose_image, target_size=768):
"""
Prepare reference and pose images for Kontext processing.
Following the RefControl format: reference (left) | pose (right)
"""
if reference_image is None or pose_image is None:
return None
# Convert to RGB
reference_image = reference_image.convert("RGB")
pose_image = pose_image.convert("RGB")
# Calculate dimensions maintaining aspect ratio
ref_ratio = reference_image.width / reference_image.height
pose_ratio = pose_image.width / pose_image.height
# Set heights to target size
height = target_size
ref_width = int(height * ref_ratio)
pose_width = int(height * pose_ratio)
# Ensure dimensions are divisible by 8 (FLUX requirement)
ref_width = (ref_width // 8) * 8
pose_width = (pose_width // 8) * 8
height = (height // 8) * 8
# Resize images
reference_resized = reference_image.resize((ref_width, height), Image.LANCZOS)
pose_resized = pose_image.resize((pose_width, height), Image.LANCZOS)
# Concatenate horizontally: reference | pose
total_width = ref_width + pose_width
concatenated = Image.new('RGB', (total_width, height))
concatenated.paste(reference_resized, (0, 0))
concatenated.paste(pose_resized, (ref_width, 0))
return concatenated
def extract_pose_edges(image):
"""
Extract edge/pose information from an image.
"""
if image is None:
return None
# Convert to grayscale
gray = image.convert("L")
# Apply edge detection
edges = gray.filter(ImageFilter.FIND_EDGES)
# Enhance contrast
edges = ImageOps.autocontrast(edges)
# Invert to get black lines on white
edges = ImageOps.invert(edges)
# Smooth the result
edges = edges.filter(ImageFilter.SMOOTH_MORE)
# Convert back to RGB
return edges.convert("RGB")
@spaces.GPU(duration=60)
def generate_pose_transfer(
reference_image,
pose_image,
prompt="",
negative_prompt="",
seed=42,
randomize_seed=False,
guidance_scale=3.5,
num_inference_steps=28,
lora_scale=1.0,
enhance_pose=False,
progress=gr.Progress(track_tqdm=True)
):
"""
Main generation function using RefControl approach.
"""
if pipe is None:
return None, 0, "Model not loaded. Please check HF_TOKEN and restart the Space"
if reference_image is None or pose_image is None:
raise gr.Error("Please upload both reference and pose images")
# Randomize seed if requested
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Enhance pose if requested
if enhance_pose:
pose_image = extract_pose_edges(pose_image)
# Prepare concatenated input
concatenated_input = prepare_images_for_kontext(reference_image, pose_image)
if concatenated_input is None:
raise gr.Error("Failed to process images")
# Construct prompt with trigger word
if prompt:
full_prompt = f"{TRIGGER_WORD}, {prompt}"
else:
full_prompt = f"{TRIGGER_WORD}, transfer the pose from the right image to the subject in the left image while maintaining their identity, clothing, and style"
# Add instruction for the model
full_prompt += ". The left image shows the reference subject, the right image shows the target pose."
# Set generator for reproducibility
generator = torch.Generator("cuda").manual_seed(seed)
try:
# Check if we have LoRA capabilities
has_lora = hasattr(pipe, 'set_adapters') and "RefControl" in MODEL_STATUS
with torch.autocast("cuda"):
if has_lora:
# Try to set LoRA adapter strength
try:
pipe.set_adapters(["refcontrol"], adapter_weights=[lora_scale])
except Exception as e:
print(f"Could not set LoRA adapter: {e}")
# Generate image based on pipeline type
if "Kontext" in MODEL_STATUS:
# Use Kontext pipeline
result = pipe(
image=concatenated_input,
prompt=full_prompt,
negative_prompt=negative_prompt if negative_prompt else None,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
width=concatenated_input.width,
height=concatenated_input.height,
).images[0]
else:
# Use standard FLUX pipeline (image-to-image)
result = pipe(
prompt=full_prompt,
image=concatenated_input,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
strength=0.85, # For img2img mode
).images[0]
return result, seed, concatenated_input
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
# CSS styling
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
.header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
border-radius: 12px;
margin-bottom: 20px;
}
.header h1 {
color: white;
margin: 0;
font-size: 2em;
}
.status-box {
padding: 10px;
border-radius: 8px;
margin: 10px 0;
font-weight: bold;
text-align: center;
}
.input-image {
border: 2px solid #e0e0e0;
border-radius: 8px;
overflow: hidden;
}
.result-image {
border: 3px solid #4CAF50;
border-radius: 8px;
overflow: hidden;
}
.info-box {
background: #f0f0f0;
padding: 10px;
border-radius: 8px;
margin: 10px 0;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
# Header
gr.HTML("""
<div class="header">
<h1>π FLUX Pose Transfer System</h1>
<p style="color: white;">Transfer poses while preserving identity</p>
</div>
""")
# Model status
status_color = "#d4edda" if "β
" in MODEL_STATUS else "#fff3cd" if "β οΈ" in MODEL_STATUS else "#f8d7da"
gr.HTML(f"""
<div class="status-box" style="background: {status_color};">
{MODEL_STATUS}
</div>
""")
# Authentication check
if not HF_TOKEN:
gr.Markdown("""
### π Authentication Required
To use this Space with full features:
1. Go to **Settings** β **Variables and secrets**
2. Add `HF_TOKEN` with your Hugging Face token
3. Restart the Space
Or click below to sign in:
""")
gr.LoginButton("Sign in with Hugging Face", size="lg")
# Info box for PEFT requirement
if "PEFT required" in MODEL_STATUS:
gr.HTML("""
<div class="info-box">
<b>Note:</b> For full LoRA support, PEFT library is required.
Add <code>peft</code> to your requirements.txt file.
</div>
""")
# Main interface
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π₯ Input Images")
# Reference image
reference_image = gr.Image(
label="Reference Image (Subject to transform)",
type="pil",
elem_classes=["input-image"],
height=300
)
# Pose image
pose_image = gr.Image(
label="Pose Control (Line art or skeleton)",
type="pil",
elem_classes=["input-image"],
height=300
)
# Pose extraction tool
with gr.Accordion("π§ Extract Pose from Image", open=False):
extract_source = gr.Image(
label="Source image for pose extraction",
type="pil",
height=200
)
extract_btn = gr.Button("Extract Pose", size="sm")
# Prompts
prompt = gr.Textbox(
label=f"Prompt ('{TRIGGER_WORD}' added automatically)",
placeholder="e.g., wearing elegant dress, professional photography",
lines=2
)
negative_prompt = gr.Textbox(
label="Negative Prompt (optional)",
placeholder="e.g., blurry, low quality, distorted",
lines=1,
value="blurry, low quality, distorted, deformed"
)
# Generate button
generate_btn = gr.Button(
"π¨ Generate Pose Transfer",
variant="primary",
size="lg"
)
# Advanced settings
with gr.Accordion("βοΈ Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
randomize_seed = gr.Checkbox(
label="Randomize",
value=True
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=3.5,
info="How strictly to follow the pose"
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=20,
maximum=50,
step=1,
value=28
)
if "LoRA" in MODEL_STATUS:
lora_scale = gr.Slider(
label="LoRA Strength",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="RefControl LoRA influence"
)
else:
lora_scale = gr.Slider(
label="LoRA Strength (not available)",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
interactive=False
)
enhance_pose = gr.Checkbox(
label="Auto-enhance pose edges",
value=False
)
with gr.Column(scale=1):
gr.Markdown("### πΌοΈ Result")
# Result image
result_image = gr.Image(
label="Generated Image",
elem_classes=["result-image"],
interactive=False,
height=500
)
# Seed display
seed_used = gr.Number(
label="Seed Used",
interactive=False
)
# Debug view
with gr.Accordion("π Debug View", open=False):
concat_preview = gr.Image(
label="Input Concatenation (Reference | Pose)",
height=200
)
# Action buttons
with gr.Row():
reuse_ref_btn = gr.Button("β»οΈ Use as Reference", size="sm")
reuse_pose_btn = gr.Button("π Extract Pose", size="sm")
clear_btn = gr.Button("ποΈ Clear All", size="sm")
# Examples
gr.Markdown("### π‘ Example Prompts")
gr.Examples(
examples=[
["professional portrait, studio lighting"],
["wearing red dress, outdoor garden"],
["business attire, office setting"],
["casual streetwear, urban background"],
["athletic wear, gym environment"],
],
inputs=[prompt]
)
# Instructions
with gr.Accordion("π Instructions", open=False):
gr.Markdown(f"""
## How to Use:
1. **Upload Reference Image**: The person whose appearance you want to keep
2. **Upload Pose Image**: Line art or skeleton pose to follow
3. **Add Prompt** (optional): Describe additional details
4. **Click Generate**: Create your pose-transferred image
## Model Information:
- **Current Model**: {MODEL_STATUS}
- **Trigger Word**: `{TRIGGER_WORD}` (added automatically)
## Tips:
- Use clear, high-contrast pose images
- Black lines on white background work best for poses
- Adjust guidance scale for pose adherence strength
- Higher steps = better quality but slower
## Requirements:
- **HF_TOKEN**: Required for model access
- **peft**: Required for LoRA support (add to requirements.txt)
""")
# Event handlers
generate_btn.click(
fn=generate_pose_transfer,
inputs=[
reference_image,
pose_image,
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
lora_scale,
enhance_pose
],
outputs=[result_image, seed_used, concat_preview]
)
extract_btn.click(
fn=extract_pose_edges,
inputs=[extract_source],
outputs=[pose_image]
)
reuse_ref_btn.click(
fn=lambda x: x,
inputs=[result_image],
outputs=[reference_image]
)
reuse_pose_btn.click(
fn=extract_pose_edges,
inputs=[result_image],
outputs=[pose_image]
)
clear_btn.click(
fn=lambda: [None, None, "", "blurry, low quality, distorted, deformed", 42, None, None],
outputs=[
reference_image,
pose_image,
prompt,
negative_prompt,
seed_used,
result_image,
concat_preview
]
)
# Launch the app
if __name__ == "__main__":
demo.queue()
demo.launch() |