Spaces:
Sleeping
Sleeping
| from PIL import Image | |
| import gradio as gr | |
| from transformers import BlipProcessor, BlipForConditionalGeneration | |
| model_id = "Salesforce/blip-image-captioning-base" | |
| model = BlipForConditionalGeneration.from_pretrained(model_id) | |
| processor = BlipProcessor.from_pretrained(model_id) | |
| def generate_caption(image_array): | |
| # Convert numpy array to PIL Image | |
| image = Image.fromarray(image_array.astype('uint8')).convert('RGB') | |
| # Process the image to generate tensor inputs | |
| inputs = processor(image, return_tensors="pt") | |
| # Generate caption for the image | |
| out = model.generate(**inputs) | |
| # Decode and return the generated caption | |
| return processor.decode(out[0], skip_special_tokens=True) | |
| # Gradio interface setup to accept image input and produce text output | |
| iface = gr.Interface(generate_caption, inputs="image", outputs="text") | |
| # Launch the interface | |
| iface.launch() | |