Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,9 +7,9 @@ model_id = "Salesforce/blip-image-captioning-base"
|
|
| 7 |
model = BlipForConditionalGeneration.from_pretrained(model_id)
|
| 8 |
processor = BlipProcessor.from_pretrained(model_id)
|
| 9 |
|
| 10 |
-
def generate_caption(
|
| 11 |
-
#
|
| 12 |
-
image = Image.
|
| 13 |
|
| 14 |
# Process the image to generate tensor inputs
|
| 15 |
inputs = processor(image, return_tensors="pt")
|
|
@@ -20,6 +20,7 @@ def generate_caption(image_path):
|
|
| 20 |
# Decode and return the generated caption
|
| 21 |
return processor.decode(out[0], skip_special_tokens=True)
|
| 22 |
|
|
|
|
| 23 |
# Gradio interface setup to accept image input and produce text output
|
| 24 |
iface = gr.Interface(generate_caption, inputs="image", outputs="text")
|
| 25 |
|
|
|
|
| 7 |
model = BlipForConditionalGeneration.from_pretrained(model_id)
|
| 8 |
processor = BlipProcessor.from_pretrained(model_id)
|
| 9 |
|
| 10 |
+
def generate_caption(image_array):
|
| 11 |
+
# Convert numpy array to PIL Image
|
| 12 |
+
image = Image.fromarray(image_array.astype('uint8')).convert('RGB')
|
| 13 |
|
| 14 |
# Process the image to generate tensor inputs
|
| 15 |
inputs = processor(image, return_tensors="pt")
|
|
|
|
| 20 |
# Decode and return the generated caption
|
| 21 |
return processor.decode(out[0], skip_special_tokens=True)
|
| 22 |
|
| 23 |
+
|
| 24 |
# Gradio interface setup to accept image input and produce text output
|
| 25 |
iface = gr.Interface(generate_caption, inputs="image", outputs="text")
|
| 26 |
|