File size: 21,912 Bytes
3c814ba
0c53c1b
3c814ba
 
8392fde
299e18a
3c814ba
8392fde
c1ff3d7
3c814ba
95d2834
 
3c814ba
 
 
 
 
0c53c1b
83140b5
3c814ba
 
c2a331b
3c814ba
 
c2a331b
3c814ba
 
c2a331b
3c814ba
 
 
c2a331b
3c814ba
 
 
 
c2a331b
c1ff3d7
c2a331b
 
 
 
 
 
 
 
 
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d2834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654ed1
3c814ba
1382c6e
95d2834
 
3c814ba
 
 
 
95d2834
3c814ba
 
 
 
 
 
 
 
c2a331b
3c814ba
c2a331b
299e18a
c2a331b
 
 
 
 
 
 
299e18a
 
3654ed1
 
 
 
 
 
 
1382c6e
 
c2a331b
1382c6e
95d2834
 
1382c6e
 
 
 
 
 
 
 
 
95d2834
0c53c1b
1382c6e
3c814ba
95d2834
3654ed1
c2a331b
3c814ba
 
c2a331b
3c814ba
c2a331b
 
3c814ba
 
 
c2a331b
3c814ba
c2a331b
 
3654ed1
3c814ba
 
 
 
 
c2a331b
 
3654ed1
c2a331b
3c814ba
95d2834
1382c6e
c2a331b
95d2834
3c814ba
 
95d2834
0c53c1b
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d2834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
 
60d9cea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
 
 
0c53c1b
60d9cea
 
 
 
 
 
 
0c53c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#!/usr/bin/env python3

import subprocess
import sys

import spaces
import torch

import gradio as gr
from PIL import Image
import numpy as np
import cv2
import pypdfium2 as pdfium
from transformers import (
    LightOnOCRForConditionalGeneration,
    LightOnOCRProcessor,
)
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
    attn_implementation = "sdpa"
    dtype = torch.bfloat16
else:
    attn_implementation = "eager"
    dtype = torch.float32

ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
    "lightonai/LightOnOCR-1B-1025",
    attn_implementation=attn_implementation,
    torch_dtype=dtype,
    trust_remote_code=True,
).to(device).eval()

processor = LightOnOCRProcessor.from_pretrained(
    "lightonai/LightOnOCR-1B-1025",
    trust_remote_code=True,
)

ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
ner_pipeline = pipeline(
    "ner",
    model=ner_model,
    tokenizer=ner_tokenizer,
    aggregation_strategy="simple",
)

def render_pdf_page(page, max_resolution=1540, scale=2.77):
    width, height = page.get_size()
    pixel_width = width * scale
    pixel_height = height * scale
    resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
    target_scale = scale * resize_factor
    return page.render(scale=target_scale, rev_byteorder=True).to_pil()

def process_pdf(pdf_path, page_num=1):
    pdf = pdfium.PdfDocument(pdf_path)
    total_pages = len(pdf)
    page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
    page = pdf[page_idx]
    img = render_pdf_page(page)
    pdf.close()
    return img, total_pages, page_idx + 1

def clean_output_text(text):
    markers_to_remove = ["system", "user", "assistant"]
    lines = text.split('\n')
    cleaned_lines = []
    for line in lines:
        stripped = line.strip()
        if stripped.lower() not in markers_to_remove:
            cleaned_lines.append(line)
    cleaned = '\n'.join(cleaned_lines).strip()
    if "assistant" in text.lower():
        parts = text.split("assistant", 1)
        if len(parts) > 1:
            cleaned = parts[1].strip()
    return cleaned

def preprocess_image_for_ocr(image):
    """Convert PIL.Image to adaptive thresholded image for OCR."""
    image_rgb = image.convert("RGB")
    img_np = np.array(image_rgb)
    gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
    adaptive_threshold = cv2.adaptiveThreshold(
        gray,
        255,
        cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
        cv2.THRESH_BINARY,
        85,
        11,
    )
    preprocessed_pil = Image.fromarray(adaptive_threshold)
    return preprocessed_pil

@spaces.GPU
def extract_text_from_image(image, temperature=0.2):
    """OCR + clinical NER, with preprocessing."""
    processed_img = preprocess_image_for_ocr(image)
    chat = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": processed_img}
            ],
        }
    ]
    inputs = processor.apply_chat_template(
        chat,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    )
    # Move inputs to device
    inputs = {
        k: (
            v.to(device=device, dtype=dtype)
            if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
            else v.to(device)
            if isinstance(v, torch.Tensor)
            else v
        )
        for k, v in inputs.items()
    }
    generation_kwargs = dict(
        **inputs,
        max_new_tokens=2048,
        temperature=temperature if temperature > 0 else 0.0,
        use_cache=True,
        do_sample=temperature > 0,
    )
    with torch.no_grad():
        outputs = ocr_model.generate(**generation_kwargs)

    output_text = processor.decode(outputs[0], skip_special_tokens=True)
    cleaned_text = clean_output_text(output_text)
    entities = ner_pipeline(cleaned_text)
    medications = []
    for ent in entities:
        if ent["entity_group"] == "treatment":
            word = ent["word"]
            if word.startswith("##") and medications:
                medications[-1] += word[2:]
            else:
                medications.append(word)
    medications_str = ", ".join(set(medications)) if medications else "None detected"
    yield cleaned_text, medications_str, output_text, processed_img

def process_input(file_input, temperature, page_num):
    if file_input is None:
        yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
        return

    image_to_process = None
    page_info = ""
    slider_value = page_num
    file_path = file_input if isinstance(file_input, str) else file_input.name

    if file_path.lower().endswith(".pdf"):
        try:
            image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
            page_info = f"Processing page {actual_page} of {total_pages}"
            slider_value = actual_page
        except Exception as e:
            msg = f"Error processing PDF: {str(e)}"
            yield msg, "", msg, "", None, slider_value
            return
    else:
        try:
            image_to_process = Image.open(file_path)
            page_info = "Processing image"
        except Exception as e:
            msg = f"Error opening image: {str(e)}"
            yield msg, "", msg, "", None, slider_value
            return

    try:
        for cleaned_text, medications, raw_md, processed_img in extract_text_from_image(
            image_to_process, temperature
        ):
            yield cleaned_text, medications, raw_md, page_info, processed_img, slider_value
    except Exception as e:
        error_msg = f"Error during text extraction: {str(e)}"
        yield error_msg, "", error_msg, page_info, image_to_process, slider_value

def update_slider(file_input):
    if file_input is None:
        return gr.update(maximum=20, value=1)
    file_path = file_input if isinstance(file_input, str) else file_input.name
    if file_path.lower().endswith('.pdf'):
        try:
            pdf = pdfium.PdfDocument(file_path)
            total_pages = len(pdf)
            pdf.close()
            return gr.update(maximum=total_pages, value=1)
        except:
            return gr.update(maximum=20, value=1)
    else:
        return gr.update(maximum=1, value=1)

with gr.Blocks(title="πŸ’Š Medicine Extraction", theme=gr.themes.Soft()) as demo:
    file_input = gr.File(
        label="πŸ–ΌοΈ Upload Image or PDF",
        file_types=[".pdf", ".png", ".jpg", ".jpeg"],
        type="filepath"
    )
    temperature = gr.Slider(
        minimum=0.0,
        maximum=1.0,
        value=0.2,
        step=0.05,
        label="Temperature"
    )
    page_slider = gr.Slider(
        minimum=1, maximum=20, value=1, step=1,
        label="Page Number (PDF only)",
        interactive=True
    )
    output_text = gr.Textbox(
        label="πŸ“ Extracted Text",
        lines=4,
        max_lines=10,
        interactive=False,
        show_copy_button=True
    )
    medicines_output = gr.Textbox(
        label="πŸ’Š Extracted Medicines/Drugs",
        placeholder="Medicine/drug names will appear here...",
        lines=2,
        max_lines=5,
        interactive=False,
        show_copy_button=True
    )
    raw_output = gr.Textbox(
        label="Raw Model Output",
        lines=2,
        max_lines=5,
        interactive=False
    )
    page_info = gr.Markdown(
        value="",  # Info of PDF page
        interactive=False
    )
    rendered_image = gr.Image(
        label="Processed Image (Thresholded for OCR)",
        interactive=False
    )
    num_pages = gr.Number(
        value=1, label="Current Page (slider)", visible=False
    )
    submit_btn = gr.Button("Extract Medicines", variant="primary")

    submit_btn.click(
        fn=process_input,
        inputs=[file_input, temperature, page_slider],
        outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
    )

    file_input.change(
        fn=update_slider,
        inputs=[file_input],
        outputs=[page_slider]
    )

if __name__ == "__main__":
    demo.launch()




# Create Gradio interface
# with gr.Blocks(title="πŸ“– Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
#     gr.Markdown(f"""
# # πŸ“– Image/PDF to Text Extraction with LightOnOCR

# **πŸ’‘ How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract (1-20)
# 3. Adjust temperature if needed
# 4. Click "Extract Text"

# **Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!

# **Model:** LightOnOCR-1B-1025 by LightOn AI  
# **Device:** {device.upper()}  
# **Attention:** {attn_implementation}
# """)
    
#     with gr.Row():
#         with gr.Column(scale=1):
#             file_input = gr.File(
#                 label="πŸ–ΌοΈ Upload Image or PDF",
#                 file_types=[".pdf", ".png", ".jpg", ".jpeg"],
#                 type="filepath"
#             )
#             rendered_image = gr.Image(
#                 label="πŸ“„ Preview",
#                 type="pil",
#                 height=400,
#                 interactive=False
#             )
#             num_pages = gr.Slider(
#                 minimum=1,
#                 maximum=20,
#                 value=1,
#                 step=1,
#                 label="PDF: Page Number",
#                 info="Select which page to extract"
#             )
#             page_info = gr.Textbox(
#                 label="Processing Info",
#                 value="",
#                 interactive=False
#             )
#             temperature = gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 value=0.2,
#                 step=0.05,
#                 label="Temperature",
#                 info="0.0 = deterministic, Higher = more varied"
#             )
#             submit_btn = gr.Button("Extract Text", variant="primary")
#             clear_btn = gr.Button("Clear", variant="secondary")
        
#         with gr.Column(scale=2):
#             output_text = gr.Markdown(
#                 label="πŸ“„ Extracted Text (Rendered)",
#                 value="*Extracted text will appear here...*"
#             )
#             medications_output = gr.Textbox(
#     label="πŸ’Š Extracted Medicines/Drugs",
#     placeholder="Medicine/drug names will appear here...",
#     lines=2,
#     max_lines=5,
#     interactive=False,
#     show_copy_button=True
# )
    
#     with gr.Row():
#         with gr.Column():
#             raw_output = gr.Textbox(
#                 label="Raw Markdown Output",
#                 placeholder="Raw text will appear here...",
#                 lines=20,
#                 max_lines=30,
#                 show_copy_button=True
#             )
    
#     # Event handlers
#     submit_btn.click(
#     fn=process_input,
#     inputs=[file_input, temperature, num_pages, ],
#     outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
# )




####################################  old code to be checked #############################################

# import sys
# import threading

# import spaces
# import torch

# import gradio as gr
# from PIL import Image
# from io import BytesIO
# import pypdfium2 as pdfium
# from transformers import (
#     LightOnOCRForConditionalGeneration,
#     LightOnOCRProcessor,
#     TextIteratorStreamer,
# )

# # ---- CLINICAL NER IMPORTS ----
# import spacy

# device = "cuda" if torch.cuda.is_available() else "cpu"

# # Choose best attention implementation based on device
# if device == "cuda":
#     attn_implementation = "sdpa"  
#     dtype = torch.bfloat16
#     print("Using sdpa for GPU")
# else:
#     attn_implementation = "eager"  # Best for CPU
#     dtype = torch.float32
#     print("Using eager attention for CPU")

# # Initialize the LightOnOCR model and processor
# print(f"Loading model on {device} with {attn_implementation} attention...")
# model = LightOnOCRForConditionalGeneration.from_pretrained(
#     "lightonai/LightOnOCR-1B-1025",
#     attn_implementation=attn_implementation,
#     torch_dtype=dtype,
#     trust_remote_code=True
# ).to(device).eval()

# processor = LightOnOCRProcessor.from_pretrained(
#     "lightonai/LightOnOCR-1B-1025",
#     trust_remote_code=True
# )
# print("Model loaded successfully!")

# # ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
# print("Loading clinical NER model (bc5cdr)...")
# nlp_ner = spacy.load("en_ner_bc5cdr_md")
# print("Clinical NER loaded.")

# def render_pdf_page(page, max_resolution=1540, scale=2.77):
#     """Render a PDF page to PIL Image."""
#     width, height = page.get_size()
#     pixel_width = width * scale
#     pixel_height = height * scale
#     resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
#     target_scale = scale * resize_factor
#     return page.render(scale=target_scale, rev_byteorder=True).to_pil()


# def process_pdf(pdf_path, page_num=1):
#     """Extract a specific page from PDF."""
#     pdf = pdfium.PdfDocument(pdf_path)
#     total_pages = len(pdf)
#     page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
    
#     page = pdf[page_idx]
#     img = render_pdf_page(page)
    
#     pdf.close()
#     return img, total_pages, page_idx + 1


# def clean_output_text(text):
#     """Remove chat template artifacts from output."""
#     markers_to_remove = ["system", "user", "assistant"]
#     lines = text.split('\n')
#     cleaned_lines = []
#     for line in lines:
#         stripped = line.strip()
#         # Skip lines that are just template markers
#         if stripped.lower() not in markers_to_remove:
#             cleaned_lines.append(line)
#     cleaned = '\n'.join(cleaned_lines).strip()
#     if "assistant" in text.lower():
#         parts = text.split("assistant", 1)
#         if len(parts) > 1:
#             cleaned = parts[1].strip()
#     return cleaned

# def extract_medication_names(text):
#     """Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
#     doc = nlp_ner(text)
#     meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
#     meds_unique = list(dict.fromkeys(meds))
#     return meds_unique


# @spaces.GPU
# def extract_text_from_image(image, temperature=0.2, stream=False):
#     """Extract text from image using LightOnOCR model."""
#     chat = [
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "url": image},
#             ],
#         }
#     ]
#     inputs = processor.apply_chat_template(
#         chat,
#         add_generation_prompt=True,
#         tokenize=True,
#         return_dict=True,
#         return_tensors="pt"
#     )
#     inputs = {
#         k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
#         else v.to(device) if isinstance(v, torch.Tensor) 
#         else v 
#         for k, v in inputs.items()
#     }
#     generation_kwargs = dict(
#         **inputs,
#         max_new_tokens=2048,
#         temperature=temperature if temperature > 0 else 0.0,
#         use_cache=True,
#         do_sample=temperature > 0,
#     )
#     if stream:
#         # Streaming generation
#         streamer = TextIteratorStreamer(
#             processor.tokenizer,
#             skip_prompt=True,
#             skip_special_tokens=True
#         )
#         generation_kwargs["streamer"] = streamer
#         thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
#         thread.start()
#         full_text = ""
#         for new_text in streamer:
#             full_text += new_text
#             cleaned_text = clean_output_text(full_text)
#             yield cleaned_text
#         thread.join()
#     else:
#         # Non-streaming generation
#         with torch.no_grad():
#             outputs = model.generate(**generation_kwargs)
#         output_text = processor.decode(outputs[0], skip_special_tokens=True)
#         cleaned_text = clean_output_text(output_text)
#         yield cleaned_text

# def process_input(file_input, temperature, page_num, enable_streaming):
#     """Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
#     if file_input is None:
#         yield "Please upload an image or PDF first.", "", "", None, gr.update()
#         return
#     image_to_process = None
#     page_info = ""
#     file_path = file_input if isinstance(file_input, str) else file_input.name
#     # Handle PDF files
#     if file_path.lower().endswith('.pdf'):
#         try:
#             image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
#             page_info = f"Processing page {actual_page} of {total_pages}"
#         except Exception as e:
#             yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
#             return
#     # Handle image files
#     else:
#         try:
#             image_to_process = Image.open(file_path)
#             page_info = "Processing image"
#         except Exception as e:
#             yield f"Error opening image: {str(e)}", "", "", None, gr.update()
#             return
#     try:
#         for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
#             meds = extract_medication_names(extracted_text)
#             meds_str = "\n".join(meds) if meds else "No medications found."
#             yield meds_str, meds_str, page_info, image_to_process, gr.update()
#     except Exception as e:
#         error_msg = f"Error during text extraction: {str(e)}"
#         yield error_msg, error_msg, page_info, image_to_process, gr.update()

# def update_slider(file_input):
#     """Update page slider based on PDF page count."""
#     if file_input is None:
#         return gr.update(maximum=20, value=1)
#     file_path = file_input if isinstance(file_input, str) else file_input.name
#     if file_path.lower().endswith('.pdf'):
#         try:
#             pdf = pdfium.PdfDocument(file_path)
#             total_pages = len(pdf)
#             pdf.close()
#             return gr.update(maximum=total_pages, value=1)
#         except:
#             return gr.update(maximum=20, value=1)
#     else:
#         return gr.update(maximum=1, value=1)

# # ----- GRADIO UI -----
# with gr.Blocks(title="πŸ“– Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
#     gr.Markdown(f"""
# # πŸ“– Medication Extraction from Image/PDF with LightOnOCR + Clinical NER

# **πŸ’‘ How to use:**
# 1. Upload an image or PDF
# 2. For PDFs: select which page to extract
# 3. Adjust temperature if needed
# 4. Click "Extract Medications"

# **Output:** Only medication names found in text (via NER)

# **Model:** LightOnOCR-1B-1025 by LightOn AI  
# **Device:** {device.upper()}  
# **Attention:** {attn_implementation}
# """)
#     with gr.Row():
#         with gr.Column(scale=1):
#             file_input = gr.File(
#                 label="πŸ–ΌοΈ Upload Image or PDF",
#                 file_types=[".pdf", ".png", ".jpg", ".jpeg"],
#                 type="filepath"
#             )
#             rendered_image = gr.Image(
#                 label="πŸ“„ Preview",
#                 type="pil",
#                 height=400,
#                 interactive=False
#             )
#             num_pages = gr.Slider(
#                 minimum=1,
#                 maximum=20,
#                 value=1,
#                 step=1,
#                 label="PDF: Page Number",
#                 info="Select which page to extract"
#             )
#             page_info = gr.Textbox(
#                 label="Processing Info",
#                 value="",
#                 interactive=False
#             )
#             temperature = gr.Slider(
#                 minimum=0.0,
#                 maximum=1.0,
#                 value=0.2,
#                 step=0.05,
#                 label="Temperature",
#                 info="0.0 = deterministic, Higher = more varied"
#             )
#             enable_streaming = gr.Checkbox(
#                 label="Enable Streaming",
#                 value=True,
#                 info="Show text progressively as it's generated"
#             )
#             submit_btn = gr.Button("Extract Medications", variant="primary")
#             clear_btn = gr.Button("Clear", variant="secondary")
#         with gr.Column(scale=2):
#             output_text = gr.Markdown(
#                 label="🩺 Extracted Medication Names",
#                 value="*Medication names will appear here...*"
#             )
#     with gr.Row():
#         with gr.Column():
#             raw_output = gr.Textbox(
#                 label="Extracted Medication Names (Raw)",
#                 placeholder="Medication list will appear here...",
#                 lines=20,
#                 max_lines=30,
#                 show_copy_button=True
#             )
#     # Event handlers
#     submit_btn.click(
#         fn=process_input,
#         inputs=[file_input, temperature, num_pages, enable_streaming],
#         outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
#     )
#     file_input.change(
#         fn=update_slider,
#         inputs=[file_input],
#         outputs=[num_pages]
#     )
#     clear_btn.click(
#         fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
#         outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
#     )

# if __name__ == "__main__":
#     demo.launch()