Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,27 +8,23 @@ import torch
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
from PIL import Image
|
| 11 |
-
|
|
|
|
| 12 |
import pypdfium2 as pdfium
|
| 13 |
from transformers import (
|
| 14 |
LightOnOCRForConditionalGeneration,
|
| 15 |
LightOnOCRProcessor,
|
| 16 |
)
|
| 17 |
-
|
| 18 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 19 |
|
| 20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
-
|
| 22 |
if device == "cuda":
|
| 23 |
attn_implementation = "sdpa"
|
| 24 |
dtype = torch.bfloat16
|
| 25 |
-
print("Using sdpa for GPU")
|
| 26 |
else:
|
| 27 |
attn_implementation = "eager"
|
| 28 |
dtype = torch.float32
|
| 29 |
-
print("Using eager attention for CPU")
|
| 30 |
|
| 31 |
-
print(f"Loading LightOnOCR model on {device} with {attn_implementation} attention...")
|
| 32 |
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 33 |
"lightonai/LightOnOCR-1B-1025",
|
| 34 |
attn_implementation=attn_implementation,
|
|
@@ -40,10 +36,7 @@ processor = LightOnOCRProcessor.from_pretrained(
|
|
| 40 |
"lightonai/LightOnOCR-1B-1025",
|
| 41 |
trust_remote_code=True,
|
| 42 |
)
|
| 43 |
-
print("LightOnOCR model loaded successfully!")
|
| 44 |
|
| 45 |
-
# -------- Clinical NER models (load ONCE) --------
|
| 46 |
-
print("Loading clinical NER model...")
|
| 47 |
ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 48 |
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 49 |
ner_pipeline = pipeline(
|
|
@@ -52,11 +45,8 @@ ner_pipeline = pipeline(
|
|
| 52 |
tokenizer=ner_tokenizer,
|
| 53 |
aggregation_strategy="simple",
|
| 54 |
)
|
| 55 |
-
print("Clinical NER model loaded successfully!")
|
| 56 |
-
|
| 57 |
|
| 58 |
def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
| 59 |
-
"""Render a PDF page to PIL Image."""
|
| 60 |
width, height = page.get_size()
|
| 61 |
pixel_width = width * scale
|
| 62 |
pixel_height = height * scale
|
|
@@ -64,61 +54,58 @@ def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
|
| 64 |
target_scale = scale * resize_factor
|
| 65 |
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
|
| 66 |
|
| 67 |
-
|
| 68 |
def process_pdf(pdf_path, page_num=1):
|
| 69 |
-
"""Extract a specific page from PDF."""
|
| 70 |
pdf = pdfium.PdfDocument(pdf_path)
|
| 71 |
total_pages = len(pdf)
|
| 72 |
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
|
| 73 |
-
|
| 74 |
page = pdf[page_idx]
|
| 75 |
img = render_pdf_page(page)
|
| 76 |
-
|
| 77 |
pdf.close()
|
| 78 |
return img, total_pages, page_idx + 1
|
| 79 |
|
| 80 |
-
|
| 81 |
def clean_output_text(text):
|
| 82 |
-
"""Remove chat template artifacts from output."""
|
| 83 |
-
# Remove common chat template markers
|
| 84 |
markers_to_remove = ["system", "user", "assistant"]
|
| 85 |
-
|
| 86 |
-
# Split by lines and filter
|
| 87 |
lines = text.split('\n')
|
| 88 |
cleaned_lines = []
|
| 89 |
-
|
| 90 |
for line in lines:
|
| 91 |
stripped = line.strip()
|
| 92 |
-
# Skip lines that are just template markers
|
| 93 |
if stripped.lower() not in markers_to_remove:
|
| 94 |
cleaned_lines.append(line)
|
| 95 |
-
|
| 96 |
-
# Join back and strip leading/trailing whitespace
|
| 97 |
cleaned = '\n'.join(cleaned_lines).strip()
|
| 98 |
-
|
| 99 |
-
# Alternative approach: if there's an "assistant" marker, take everything after it
|
| 100 |
if "assistant" in text.lower():
|
| 101 |
parts = text.split("assistant", 1)
|
| 102 |
if len(parts) > 1:
|
| 103 |
cleaned = parts[1].strip()
|
| 104 |
-
|
| 105 |
return cleaned
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
@spaces.GPU
|
| 109 |
def extract_text_from_image(image, temperature=0.2):
|
| 110 |
-
"""
|
| 111 |
-
|
| 112 |
chat = [
|
| 113 |
{
|
| 114 |
"role": "user",
|
| 115 |
"content": [
|
| 116 |
-
{"type": "image", "
|
| 117 |
],
|
| 118 |
}
|
| 119 |
]
|
| 120 |
-
|
| 121 |
-
# Tokenize
|
| 122 |
inputs = processor.apply_chat_template(
|
| 123 |
chat,
|
| 124 |
add_generation_prompt=True,
|
|
@@ -126,7 +113,6 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 126 |
return_dict=True,
|
| 127 |
return_tensors="pt",
|
| 128 |
)
|
| 129 |
-
|
| 130 |
# Move inputs to device
|
| 131 |
inputs = {
|
| 132 |
k: (
|
|
@@ -138,7 +124,6 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 138 |
)
|
| 139 |
for k, v in inputs.items()
|
| 140 |
}
|
| 141 |
-
|
| 142 |
generation_kwargs = dict(
|
| 143 |
**inputs,
|
| 144 |
max_new_tokens=2048,
|
|
@@ -146,19 +131,12 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 146 |
use_cache=True,
|
| 147 |
do_sample=temperature > 0,
|
| 148 |
)
|
| 149 |
-
|
| 150 |
-
# Non-streaming generation
|
| 151 |
with torch.no_grad():
|
| 152 |
outputs = ocr_model.generate(**generation_kwargs)
|
| 153 |
|
| 154 |
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 155 |
-
cleaned_text = clean_output_text(output_text)
|
| 156 |
-
|
| 157 |
-
print("\n this is cleaned_text",cleaned_text )
|
| 158 |
-
|
| 159 |
-
# Clinical NER on the full cleaned text
|
| 160 |
-
entities = ner_pipeline(cleaned_text)
|
| 161 |
-
print("\n this is entity",entities)
|
| 162 |
medications = []
|
| 163 |
for ent in entities:
|
| 164 |
if ent["entity_group"] == "treatment":
|
|
@@ -167,28 +145,19 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 167 |
medications[-1] += word[2:]
|
| 168 |
else:
|
| 169 |
medications.append(word)
|
| 170 |
-
|
| 171 |
medications_str = ", ".join(set(medications)) if medications else "None detected"
|
| 172 |
-
|
| 173 |
-
yield cleaned_text, medications_str
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
def process_input(file_input, temperature, page_num):
|
| 179 |
-
"""Process uploaded file (image or PDF) and extract text with optional streaming."""
|
| 180 |
if file_input is None:
|
| 181 |
-
|
| 182 |
-
yield "Please upload an image or PDF first.", "", "", "", None, 1
|
| 183 |
return
|
| 184 |
|
| 185 |
image_to_process = None
|
| 186 |
page_info = ""
|
| 187 |
slider_value = page_num
|
| 188 |
-
|
| 189 |
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 190 |
|
| 191 |
-
# Handle PDF files
|
| 192 |
if file_path.lower().endswith(".pdf"):
|
| 193 |
try:
|
| 194 |
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
|
|
@@ -199,7 +168,6 @@ def process_input(file_input, temperature, page_num):
|
|
| 199 |
yield msg, "", msg, "", None, slider_value
|
| 200 |
return
|
| 201 |
else:
|
| 202 |
-
# Handle image files
|
| 203 |
try:
|
| 204 |
image_to_process = Image.open(file_path)
|
| 205 |
page_info = "Processing image"
|
|
@@ -209,29 +177,18 @@ def process_input(file_input, temperature, page_num):
|
|
| 209 |
return
|
| 210 |
|
| 211 |
try:
|
| 212 |
-
|
| 213 |
-
for extracted_text, medications in extract_text_from_image(
|
| 214 |
image_to_process, temperature
|
| 215 |
):
|
| 216 |
-
|
| 217 |
-
# 6 outputs: markdown_text, medications, raw_output, page_info, image, slider
|
| 218 |
-
yield extracted_text, medications, raw_md, page_info, image_to_process, gr.update(
|
| 219 |
-
value=slider_value
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
except Exception as e:
|
| 223 |
error_msg = f"Error during text extraction: {str(e)}"
|
| 224 |
-
|
| 225 |
-
yield error_msg, "", error_msg, page_info, image_to_process, gr.update(value=slider_value)
|
| 226 |
-
|
| 227 |
|
| 228 |
def update_slider(file_input):
|
| 229 |
-
"""Update page slider based on PDF page count."""
|
| 230 |
if file_input is None:
|
| 231 |
return gr.update(maximum=20, value=1)
|
| 232 |
-
|
| 233 |
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 234 |
-
|
| 235 |
if file_path.lower().endswith('.pdf'):
|
| 236 |
try:
|
| 237 |
pdf = pdfium.PdfDocument(file_path)
|
|
@@ -243,6 +200,75 @@ def update_slider(file_input):
|
|
| 243 |
else:
|
| 244 |
return gr.update(maximum=1, value=1)
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
# Create Gradio interface
|
| 248 |
# with gr.Blocks(title="📖 Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
|
|
@@ -330,41 +356,6 @@ def update_slider(file_input):
|
|
| 330 |
# outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
|
| 331 |
# )
|
| 332 |
|
| 333 |
-
with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
|
| 334 |
-
file_input = gr.File(
|
| 335 |
-
label="🖼️ Upload Image or PDF",
|
| 336 |
-
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
|
| 337 |
-
type="filepath"
|
| 338 |
-
)
|
| 339 |
-
temperature = gr.Slider(
|
| 340 |
-
minimum=0.0,
|
| 341 |
-
maximum=1.0,
|
| 342 |
-
value=0.2,
|
| 343 |
-
step=0.05,
|
| 344 |
-
label="Temperature",
|
| 345 |
-
info="0.0 = deterministic, Higher = more varied"
|
| 346 |
-
)
|
| 347 |
-
medicines_output = gr.Textbox(
|
| 348 |
-
label="💊 Extracted Medicines/Drugs",
|
| 349 |
-
placeholder="Medicine/drug names will appear here...",
|
| 350 |
-
lines=2,
|
| 351 |
-
max_lines=5,
|
| 352 |
-
interactive=False,
|
| 353 |
-
show_copy_button=True
|
| 354 |
-
)
|
| 355 |
-
submit_btn = gr.Button("Extract Medicines", variant="primary")
|
| 356 |
-
|
| 357 |
-
submit_btn.click(
|
| 358 |
-
fn=process_input, # already yields medicines as second output
|
| 359 |
-
inputs=[file_input, temperature, 1], # fix page=1 or expose slider
|
| 360 |
-
outputs=[gr.update(), medicines_output, gr.update(), gr.update(), gr.update(), gr.update()]
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
if __name__ == "__main__":
|
| 367 |
-
demo.launch()
|
| 368 |
|
| 369 |
|
| 370 |
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
from PIL import Image
|
| 11 |
+
import numpy as np
|
| 12 |
+
import cv2
|
| 13 |
import pypdfium2 as pdfium
|
| 14 |
from transformers import (
|
| 15 |
LightOnOCRForConditionalGeneration,
|
| 16 |
LightOnOCRProcessor,
|
| 17 |
)
|
|
|
|
| 18 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 19 |
|
| 20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 21 |
if device == "cuda":
|
| 22 |
attn_implementation = "sdpa"
|
| 23 |
dtype = torch.bfloat16
|
|
|
|
| 24 |
else:
|
| 25 |
attn_implementation = "eager"
|
| 26 |
dtype = torch.float32
|
|
|
|
| 27 |
|
|
|
|
| 28 |
ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 29 |
"lightonai/LightOnOCR-1B-1025",
|
| 30 |
attn_implementation=attn_implementation,
|
|
|
|
| 36 |
"lightonai/LightOnOCR-1B-1025",
|
| 37 |
trust_remote_code=True,
|
| 38 |
)
|
|
|
|
| 39 |
|
|
|
|
|
|
|
| 40 |
ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 41 |
ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 42 |
ner_pipeline = pipeline(
|
|
|
|
| 45 |
tokenizer=ner_tokenizer,
|
| 46 |
aggregation_strategy="simple",
|
| 47 |
)
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
|
|
|
| 50 |
width, height = page.get_size()
|
| 51 |
pixel_width = width * scale
|
| 52 |
pixel_height = height * scale
|
|
|
|
| 54 |
target_scale = scale * resize_factor
|
| 55 |
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
|
| 56 |
|
|
|
|
| 57 |
def process_pdf(pdf_path, page_num=1):
|
|
|
|
| 58 |
pdf = pdfium.PdfDocument(pdf_path)
|
| 59 |
total_pages = len(pdf)
|
| 60 |
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
|
|
|
|
| 61 |
page = pdf[page_idx]
|
| 62 |
img = render_pdf_page(page)
|
|
|
|
| 63 |
pdf.close()
|
| 64 |
return img, total_pages, page_idx + 1
|
| 65 |
|
|
|
|
| 66 |
def clean_output_text(text):
|
|
|
|
|
|
|
| 67 |
markers_to_remove = ["system", "user", "assistant"]
|
|
|
|
|
|
|
| 68 |
lines = text.split('\n')
|
| 69 |
cleaned_lines = []
|
|
|
|
| 70 |
for line in lines:
|
| 71 |
stripped = line.strip()
|
|
|
|
| 72 |
if stripped.lower() not in markers_to_remove:
|
| 73 |
cleaned_lines.append(line)
|
|
|
|
|
|
|
| 74 |
cleaned = '\n'.join(cleaned_lines).strip()
|
|
|
|
|
|
|
| 75 |
if "assistant" in text.lower():
|
| 76 |
parts = text.split("assistant", 1)
|
| 77 |
if len(parts) > 1:
|
| 78 |
cleaned = parts[1].strip()
|
|
|
|
| 79 |
return cleaned
|
| 80 |
|
| 81 |
+
def preprocess_image_for_ocr(image):
|
| 82 |
+
"""Convert PIL.Image to adaptive thresholded image for OCR."""
|
| 83 |
+
image_rgb = image.convert("RGB")
|
| 84 |
+
img_np = np.array(image_rgb)
|
| 85 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 86 |
+
adaptive_threshold = cv2.adaptiveThreshold(
|
| 87 |
+
gray,
|
| 88 |
+
255,
|
| 89 |
+
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 90 |
+
cv2.THRESH_BINARY,
|
| 91 |
+
85,
|
| 92 |
+
11,
|
| 93 |
+
)
|
| 94 |
+
preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 95 |
+
return preprocessed_pil
|
| 96 |
|
| 97 |
@spaces.GPU
|
| 98 |
def extract_text_from_image(image, temperature=0.2):
|
| 99 |
+
"""OCR + clinical NER, with preprocessing."""
|
| 100 |
+
processed_img = preprocess_image_for_ocr(image)
|
| 101 |
chat = [
|
| 102 |
{
|
| 103 |
"role": "user",
|
| 104 |
"content": [
|
| 105 |
+
{"type": "image", "image": processed_img}
|
| 106 |
],
|
| 107 |
}
|
| 108 |
]
|
|
|
|
|
|
|
| 109 |
inputs = processor.apply_chat_template(
|
| 110 |
chat,
|
| 111 |
add_generation_prompt=True,
|
|
|
|
| 113 |
return_dict=True,
|
| 114 |
return_tensors="pt",
|
| 115 |
)
|
|
|
|
| 116 |
# Move inputs to device
|
| 117 |
inputs = {
|
| 118 |
k: (
|
|
|
|
| 124 |
)
|
| 125 |
for k, v in inputs.items()
|
| 126 |
}
|
|
|
|
| 127 |
generation_kwargs = dict(
|
| 128 |
**inputs,
|
| 129 |
max_new_tokens=2048,
|
|
|
|
| 131 |
use_cache=True,
|
| 132 |
do_sample=temperature > 0,
|
| 133 |
)
|
|
|
|
|
|
|
| 134 |
with torch.no_grad():
|
| 135 |
outputs = ocr_model.generate(**generation_kwargs)
|
| 136 |
|
| 137 |
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 138 |
+
cleaned_text = clean_output_text(output_text)
|
| 139 |
+
entities = ner_pipeline(cleaned_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
medications = []
|
| 141 |
for ent in entities:
|
| 142 |
if ent["entity_group"] == "treatment":
|
|
|
|
| 145 |
medications[-1] += word[2:]
|
| 146 |
else:
|
| 147 |
medications.append(word)
|
|
|
|
| 148 |
medications_str = ", ".join(set(medications)) if medications else "None detected"
|
| 149 |
+
yield cleaned_text, medications_str, output_text, processed_img
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
def process_input(file_input, temperature, page_num):
|
|
|
|
| 152 |
if file_input is None:
|
| 153 |
+
yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
|
|
|
|
| 154 |
return
|
| 155 |
|
| 156 |
image_to_process = None
|
| 157 |
page_info = ""
|
| 158 |
slider_value = page_num
|
|
|
|
| 159 |
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 160 |
|
|
|
|
| 161 |
if file_path.lower().endswith(".pdf"):
|
| 162 |
try:
|
| 163 |
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
|
|
|
|
| 168 |
yield msg, "", msg, "", None, slider_value
|
| 169 |
return
|
| 170 |
else:
|
|
|
|
| 171 |
try:
|
| 172 |
image_to_process = Image.open(file_path)
|
| 173 |
page_info = "Processing image"
|
|
|
|
| 177 |
return
|
| 178 |
|
| 179 |
try:
|
| 180 |
+
for cleaned_text, medications, raw_md, processed_img in extract_text_from_image(
|
|
|
|
| 181 |
image_to_process, temperature
|
| 182 |
):
|
| 183 |
+
yield cleaned_text, medications, raw_md, page_info, processed_img, slider_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
except Exception as e:
|
| 185 |
error_msg = f"Error during text extraction: {str(e)}"
|
| 186 |
+
yield error_msg, "", error_msg, page_info, image_to_process, slider_value
|
|
|
|
|
|
|
| 187 |
|
| 188 |
def update_slider(file_input):
|
|
|
|
| 189 |
if file_input is None:
|
| 190 |
return gr.update(maximum=20, value=1)
|
|
|
|
| 191 |
file_path = file_input if isinstance(file_input, str) else file_input.name
|
|
|
|
| 192 |
if file_path.lower().endswith('.pdf'):
|
| 193 |
try:
|
| 194 |
pdf = pdfium.PdfDocument(file_path)
|
|
|
|
| 200 |
else:
|
| 201 |
return gr.update(maximum=1, value=1)
|
| 202 |
|
| 203 |
+
with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
|
| 204 |
+
file_input = gr.File(
|
| 205 |
+
label="🖼️ Upload Image or PDF",
|
| 206 |
+
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
|
| 207 |
+
type="filepath"
|
| 208 |
+
)
|
| 209 |
+
temperature = gr.Slider(
|
| 210 |
+
minimum=0.0,
|
| 211 |
+
maximum=1.0,
|
| 212 |
+
value=0.2,
|
| 213 |
+
step=0.05,
|
| 214 |
+
label="Temperature"
|
| 215 |
+
)
|
| 216 |
+
page_slider = gr.Slider(
|
| 217 |
+
minimum=1, maximum=20, value=1, step=1,
|
| 218 |
+
label="Page Number (PDF only)",
|
| 219 |
+
interactive=True
|
| 220 |
+
)
|
| 221 |
+
output_text = gr.Textbox(
|
| 222 |
+
label="📝 Extracted Text",
|
| 223 |
+
lines=4,
|
| 224 |
+
max_lines=10,
|
| 225 |
+
interactive=False,
|
| 226 |
+
show_copy_button=True
|
| 227 |
+
)
|
| 228 |
+
medicines_output = gr.Textbox(
|
| 229 |
+
label="💊 Extracted Medicines/Drugs",
|
| 230 |
+
placeholder="Medicine/drug names will appear here...",
|
| 231 |
+
lines=2,
|
| 232 |
+
max_lines=5,
|
| 233 |
+
interactive=False,
|
| 234 |
+
show_copy_button=True
|
| 235 |
+
)
|
| 236 |
+
raw_output = gr.Textbox(
|
| 237 |
+
label="Raw Model Output",
|
| 238 |
+
lines=2,
|
| 239 |
+
max_lines=5,
|
| 240 |
+
interactive=False
|
| 241 |
+
)
|
| 242 |
+
page_info = gr.Markdown(
|
| 243 |
+
value="", # Info of PDF page
|
| 244 |
+
interactive=False
|
| 245 |
+
)
|
| 246 |
+
rendered_image = gr.Image(
|
| 247 |
+
label="Processed Image (Thresholded for OCR)",
|
| 248 |
+
interactive=False
|
| 249 |
+
)
|
| 250 |
+
num_pages = gr.Number(
|
| 251 |
+
value=1, label="Current Page (slider)", visible=False
|
| 252 |
+
)
|
| 253 |
+
submit_btn = gr.Button("Extract Medicines", variant="primary")
|
| 254 |
+
|
| 255 |
+
submit_btn.click(
|
| 256 |
+
fn=process_input,
|
| 257 |
+
inputs=[file_input, temperature, page_slider],
|
| 258 |
+
outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
file_input.change(
|
| 262 |
+
fn=update_slider,
|
| 263 |
+
inputs=[file_input],
|
| 264 |
+
outputs=[page_slider]
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
demo.launch()
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
|
| 273 |
# Create Gradio interface
|
| 274 |
# with gr.Blocks(title="📖 Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
|
|
|
|
| 356 |
# outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
|
| 357 |
# )
|
| 358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
|
| 361 |
|