Spaces:
Sleeping
title: Doom Environment Server
emoji: 🎮
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
- openenv
- Doom
- vizDoom
- Reinforcement-Learning
Doom Environment
A ViZDoom-based environment for OpenEnv. ViZDoom is a Doom-based AI research platform for visual reinforcement learning, allowing agents to play Doom using only visual information.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⢾⠍⡉⠉⠙⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⣴⠾⠿⠽⢷⣶⣤⡀⠀⠀⠀⠀⠀⠀⠀⢀⣟⡟⣠⣿⣶⡀⣷⡻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠴⡟⡋⡀⠀⣀⣀⠀⠀⠉⠛⣦⡀⠀⠀⠀⠀⠀⠀⢿⣅⣽⣿⣿⣷⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠃⢀⢾⣿⣿⣿⣯⣬⣽⣿⣀⡀⠈⠙⣆⠀⠀⠀⠀⢀⣸⣯⣿⣾⡷⢻⣿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣜⢁⠁⣾⡿⣙⠿⣯⣭⣍⣹⠼⠋⠁⣴⠀⢘⣧⠀⠀⡴⢛⣭⢟⠽⠋⢠⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢻⠘⢸⡿⢷⣬⣧⡀⠀⠀⠀⢀⣤⠾⢿⡇⠘⣿⡆⣸⠛⣿⡿⣟⡀⠀⡾⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣾⣦⣿⣿⡄⠈⢿⢿⣷⣶⡾⠋⠁⠀⣸⠇⡰⠛⢷⣷⣻⡿⠺⣿⣿⠽⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⣀⣀⠀⣴⠏⠀⣿⠙⢻⣿⣄⠈⠀⠸⠀⠉⠀⣠⣾⠟⢀⣧⡇⠀⢽⣿⣿⣬⣼⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⠚⣿⣿⣿⣿⣿⡿⠟⢛⣰⣿⣧⣷⣝⡿⣷⣞⢷⣄⣲⣾⣿⡃⢰⡿⡟⢀⣴⣿⣿⣿⣯⡿⠿⣿⣶⣤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠞⢁⣼⣿⣿⣿⡟⠋⠁⣉⣽⣿⣿⣿⣿⣿⣽⣯⣿⡄⠉⠁⢷⣬⣹⣿⣿⣤⡾⠁⣸⣿⣿⡟⠁⠀⠀⢹⣿⣿⣷⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡷⠞⣫⣾⣿⣿⣿⣧⡀⣤⠀⠈⣻⣿⣿⣿⣿⣿⣿⣿⣷⣖⠀⠘⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠋⠻⢤⣅⡺⢦⡀⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⣯⣴⠞⠁⣀⣿⣿⣿⣿⣷⣄⣤⠤⢊⣿⣿⣿⣿⣿⣿⣿⣿⣯⣴⣴⣶⣿⣿⠟⣸⣿⣿⣿⣿⡏⡆⠀⢠⣤⣠⣥⠀⡟⣶⣿⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⣽⡿⣿⣏⡀⠀⠹⣟⣿⡿⣿⣿⣋⣶⣺⡽⣿⣏⣅⠛⠂⠴⠶⠿⠿⠃⠈⠉⠻⣷⣶⣿⣿⣿⣿⡿⠀⣿⡄⠈⣷⣮⠙⢀⡿⠘⢻⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⢸⣧⢻⡶⠀⠀⠘⢿⣿⣿⣿⣿⣿⠋⠉⠀⠀⠉⠻⠿⠶⠶⠶⠦⠴⠞⠛⠷⠗⠈⠛⢿⣿⣿⡿⢁⣼⠯⠄⠀⠀⠀⣠⡞⠁⣠⣾⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⢸⣻⣾⣷⡀⢐⠀⣿⣿⣿⣿⣿⠁⠀⠠⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡁⠰⣾⣿⠀⠀⠈⢻⣿⣅⢿⣇⠀⠀⠀⠀⢀⣿⡟⠀⡷⢿⢿⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⡎⣤⣌⡰⣿⣿⣿⣿⣟⠀⠠⠀⢀⡀⠀⠂⠀⠀⠉⠉⠉⠈⠉⠙⢾⣭⡤⠂⠀⠀⠹⣿⣎⣿⣶⣒⣿⣷⣿⣯⣮⡵⣿⣾⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢻⢿⠛⣿⠛⠛⢿⣿⣿⣃⢀⣀⣀⠀⣀⣤⣾⠓⠶⠖⠷⣤⣄⡀⠀⠀⠀⠀⠀⠀⢠⣿⣿⣾⣿⣿⣿⠍⣩⣉⣿⡆⠰⣿⣭⡇⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡸⠾⢴⡇⠀⠀⢸⣿⣿⣯⣭⣿⣿⣿⡿⠛⠛⠛⠛⠛⠛⠛⠟⠻⣷⣶⣴⣶⣮⡴⠫⢾⣿⣿⣟⠉⣹⣿⣿⣿⣿⣷⣄⠸⢿⡇⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣴⠋⡽⠁⡾⠀⠀⠀⣼⣿⣧⣁⣴⣶⠾⢿⣿⡶⠀⠒⠒⠂⠀⠀⠀⣰⣾⣧⣌⣉⠙⠂⢠⢿⣿⣿⣫⡿⠿⠋⠉⠈⠙⢻⣽⢧⠀⣽⣄⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⢀⣴⡻⣻⣼⣿⣰⠇⠀⠀⠀⠉⣁⣿⣟⢉⣼⣶⣶⡿⠿⣿⡟⠛⠛⠛⣷⣾⢿⣯⣤⣤⡉⠳⡶⢋⡞⣿⣿⣇⠀⠀⠙⠀⠀⠀⢀⣿⣫⠇⣈⣁⣣⡀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣠⠎⠉⣰⣿⣿⣿⠉⢲⣤⠀⠀⠾⣿⣿⣳⣜⢿⡟⠫⢠⣶⣾⣷⣤⣤⣼⣯⡤⣤⣀⣻⠻⣿⣦⣠⠞⣼⣿⡿⢿⣤⡸⣷⣦⣤⣴⣿⣿⣯⠼⢥⣈⣿⡗⠶⢤⡀⠀⠀ ⠀⠀⠀⠀⢰⡃⠀⣼⣿⣿⣿⣿⣷⣤⣁⣀⣤⣾⣿⣿⣿⣿⣿⣿⠷⣾⣟⣀⣫⣄⣀⣀⣠⣄⠘⢿⡤⠴⣷⡿⠃⠘⡽⣿⣃⠘⣿⣿⣿⣿⣿⣿⣿⠿⡿⠟⠀⠘⣝⢿⡆⠀⠻⣦⡀ ⠀⠀⠀⢀⡏⢀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢳⣿⣯⣿⣿⣿⡿⣾⣿⡏⠙⣿⡉⠙⡍⠉⢿⣟⣴⠶⠾⢿⣟⠷⣿⡿⠿⣷⣾⡇⢻⣿⣿⡏⡴⠞⠻⣞⡍⠙⢫⣿⣧⠀⠀⠘⠃ ⠀⠀⢀⣾⢿⡾⢷⣿⣿⠋⣿⣿⣿⣿⣿⣿⣿⡗⣼⢿⣿⣿⠘⣿⣿⣷⣼⣣⣶⠾⠿⠛⠶⣦⠚⣠⣴⣿⣿⠋⢰⣼⣯⠁⠐⢺⣿⣿⣮⣿⣿⣿⡟⠂⢀⣽⡓⡀⠒⢹⣿⠇⠀⣤⡀ ⠀⠀⣿⠿⣾⣳⣼⣏⠛⠛⢿⣯⣶⣿⢋⣼⣿⢱⣟⣷⣮⠻⣷⠘⠿⣿⣭⣉⡉⣠⣤⣤⣄⣉⣉⣁⣾⡿⠟⣠⣾⡏⣡⠎⠀⢸⣿⡌⣿⣿⣿⣿⣟⡂⠠⢿⡅⢨⡏⣾⣟⠀⠀⠈⠁ ⠀⢸⡿⠓⢀⣿⣿⣿⡷⣦⣼⠟⣹⡵⠛⢳⢟⣾⣿⣿⡿⠀⣿⠄⡀⣿⣯⠙⣿⡟⠛⢛⠛⣿⣿⡏⢉⡇⠀⢯⣿⡇⡅⢴⠀⢸⣾⡇⠸⣟⠹⣿⢿⡏⢰⣿⣆⣈⠁⣽⣿⠀⠀⠀⠀ ⢀⡖⠘⠃⢠⣿⣯⡟⠻⣿⣻⡟⠃⠀⠀⠸⣿⢿⣿⣿⣿⣾⣿⣿⣿⣿⣿⣧⢸⣧⣤⣭⣤⣿⣿⡔⢿⣿⡿⣿⣿⣿⣷⣤⣠⣿⣿⠃⠀⣿⣇⣿⣿⣷⣿⣿⠿⢽⣷⣩⣿⠀⠀⠀⠀ ⣾⠁⣠⠹⣿⣿⡟⠻⣶⣿⢻⡇⠀⠀⠀⠀⠈⢹⡿⣿⣿⣿⣿⢟⣟⢿⢿⣿⣿⡷⠶⠶⠶⠈⢯⡻⡄⢻⣿⢀⠙⢿⣿⣿⣷⡟⠁⢀⣴⢟⣺⣿⣿⣿⣥⣽⣶⣄⣈⣿⣿⠀⠀⠀⠀ ⣭⠎⠿⢠⡟⢿⣿⣷⣽⣿⣼⡇⠀⠀⠀⠀⢠⣿⢿⡛⢿⡿⣿⡾⣿⡇⢠⣿⣿⡇⠀⠀⠀⠀⣈⢻⡖⢸⣿⢿⣾⢏⠟⠛⢿⣧⣀⣸⣴⡿⢻⣿⣻⣍⠉⣉⠛⣛⠛⠛⢿⡷⠀⠀⢀ ⢳⣶⠖⠈⢿⣿⣛⠹⣿⣿⢸⡃⠀⠀⠀⣠⠟⣩⠞⠀⠈⣿⡟⣵⡿⠃⣼⣿⣿⠁⠐⠀⠘⠃⠉⣸⣇⠀⠹⣦⢻⣟⠀⠀⠀⠹⣿⣴⣯⣼⣿⣿⣿⣿⡄⣿⡀⢿⣰⡇⢸⡇⠀⠠⠋ ⠸⣹⡶⠀⢸⣿⣿⣿⣷⣛⢻⡇⠀⠀⢠⡷⠃⠁⠀⠀⠀⣿⠸⣿⠀⠠⣿⣿⣧⡀⠀⠀⠀⠀⢰⣿⣄⠁⠀⣹⢦⣿⣦⠀⠀⠀⣿⣿⣿⡏⣿⡏⡛⠟⢲⣶⢶⣾⣷⡭⣸⡴⠊⠀⠀ ⠀⢹⡄⣄⡘⣿⣿⣿⣿⠹⡿⠁⠀⠀⣿⠇⠀⠀⠀⠀⡶⠘⡇⣿⡃⠂⣻⣿⣿⣷⡄⠀⠀⠀⢸⣿⣝⡓⢰⣿⣾⡏⣿⣦⠀⠀⢹⣾⣿⡎⢰⣷⣓⠀⣼⣿⢸⣿⢹⡆⢿⠇⠀⠀⠀ ⠀⠀⠙⠻⣿⣿⠧⠭⠭⠟⠁⠀⠀⣸⡽⢐⠀⠀⠀⢸⣇⣸⡷⣿⠃⠀⢿⣿⣿⣿⣿⣿⣷⣦⣿⣿⣯⡟⢺⣿⣿⣇⣸⡿⡇⠀⢀⡟⣿⡧⢸⣷⡌⢀⣿⣿⣼⣿⠮⣿⠋⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠀⠀⢀⣟⣷⡿⠀⠀⠀⠀⠉⢸⡇⡷⠀⢀⠈⠻⣿⣿⢿⣿⢿⣿⣿⣿⣿⣷⣾⣿⣿⡇⠉⠀⠀⠀⢸⡇⢸⣿⡾⡿⣧⣼⣿⠵⣿⣇⡾⠁⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣾⣼⡛⢸⡄⠀⠀⠀⢸⣧⢳⣀⠀⠀⠀⣿⢋⡟⠈⢧⢻⣿⣿⣿⣿⣿⣿⣿⣷⡀⠀⠀⠀⠈⡇⠀⢯⡇⠀⠉⠙⠙⠉⠉⠋⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⢹⡸⣷⠀⠀⠀⠄⠻⢷⣄⣀⢀⣼⣣⠟⠀⠀⠈⢣⠹⣿⣿⣿⣿⣿⣿⠿⢷⡄⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⡈⢁⣽⣷⡆⠀⠀⠀⠀⢈⣽⣿⡿⠃⠀⠀⠀⠀⠀⠙⣌⢻⣿⣿⣿⣿⠀⠈⢿⣦⠓⠀⠀⠀⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠚⢿⣷⣿⣿⣯⣻⡄⠀⠀⢀⣾⠟⡿⠁⠀⠀⠀⠀⠀⠀⠀⠈⢦⡻⣿⣿⣷⡀⢠⣾⣫⡿⣬⡃⠆⠛⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣻⣷⢾⣟⠛⠁⠉⢻⣿⣆⣠⡾⢿⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣇⣸⣿⣿⣾⣾⣿⠇⠀⠈⢙⡟⠿⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣫⡾⠿⣦⣀⣀⣠⡿⢿⣏⡴⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿⣿⣿⣿⣿⣤⣤⣤⡞⠁⢂⣹⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣉⣿⡳⠀⠀⠈⠁⠀⠀⠈⢿⡄⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⢿⣿⣿⣿⣷⣄⠀⠀⠀⢀⡀⠘⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣷⣻⣿⡟⠶⠶⠤⠤⠀⠀⠀⣸⣿⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿⣿⣿⣿⣿⣶⣖⣾⠭⡁⠈⢿⣳⣦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⢰⣟⣿⣽⠋⣿⠃⢤⣭⣭⠀⠀⠀⣠⣟⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⣿⣿⣿⣿⣯⡥⠶⠀⣛⠀⢶⡿⡬⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⣶⡿⢱⣿⣰⡿⠿⠶⢭⣦⠀⠀⣰⡿⢁⢿⣾⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⣿⣢⣿⣿⣿⣿⣷⣶⠖⠛⠙⢷⣌⡉⠹⣷⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⢰⣿⣗⣿⣿⣿⡀⣶⣶⠀⣹⣷⣾⣿⣷⡼⣯⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⢿⣿⣿⣿⣿⣿⣿⣿⣗⣼⠄⠀⣿⣷⣀⣿⢷⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠈⢹⣿⡿⢻⣿⣷⣽⣏⣰⣿⣿⣿⣷⣶⣧⢹⣷⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣭⠿⣿⣿⣿⣿⣿⣿⣿⣿⣥⣤⣾⠏⠻⡇⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⢿⣿⣿⣟⠻⠿⠿⠛⠹⣿⣿⣿⣿⣾⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡇⣻⣿⣿⣿⣿⣿⡍⠛⠛⠋⠁⠀⣀⢿⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⢸⡿⣿⣿⣿⣿⡗⠓⣤⠀⢀⣤⣿⢃⣸⠟⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢿⠻⣿⣿⣿⣿⣿⣏⣹⣧⢀⣾⡉⢸⣿⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⣼⡿⣿⣿⣿⣛⠁⠘⡋⠙⣋⣥⣿⢾⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡜⣿⣿⣿⣿⡏⠛⢩⡉⠀⡛⢸⣿⢷⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⢀⣿⣷⣿⣿⣿⣯⣤⡤⡒⣛⣭⣭⢾⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⢹⣿⣿⣿⣿⡦⠼⣷⠚⣩⠏⠹⣯⡀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⣿⡅⢠⣿⣿⣿⣧⣤⠾⠟⢛⣫⡵⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣳⢿⣿⣿⣿⣿⡶⣿⡞⠋⠀⠀⢻⣧⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⢰⣿⢡⢿⣿⣿⣿⣀⡀⠚⣠⣼⠁⢀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣇⣼⣿⣿⣿⣿⣇⣼⣷⣶⣿⠟⠀⣿⣇⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⣞⠇⣶⣷⣬⣭⣉⣛⢛⣛⠉⣩⡷⢾⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡯⢽⣿⣿⣿⣿⣟⣉⣩⣤⡤⠶⠂⠸⣾⡄⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣾⣿⡷⣿⣽⣾⣟⣿⣭⠈⠁⠀⣿⣠⣼⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣷⢦⣿⣿⣿⣿⣿⣯⣁⣾⣷⣶⣿⠣⣷⣵⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⢀⣾⢻⠤⠟⠓⠚⠻⢧⣀⠀⠀⠀⠙⣿⣿⣯⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢻⣿⣿⢡⠿⠛⠋⠉⠩⠀⠀⠀⠒⠄⠞⣦⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⢸⣷⣴⢞⣏⣀⠀⡀⠀⣹⣦⠾⠟⢂⡍⠻⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢨⠿⢛⣿⡶⢷⣤⣄⣀⣀⡀⢠⣴⣀⠠⡼⣿⡁⠀⠀⠀⠀ ⠀⠀⠀⠀⢘⡃⢰⠀⡀⠀⠀⢀⡀⠀⠀⠈⠀⠀⢩⠈⣽⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣼⣿⣿⡀⣀⠒⣿⣿⠇⠀⠀⠀⠀⡀⡇⠘⣿⡀⠀⠀⠀ ⠀⠀⠀⠀⠀⡇⢸⠈⠁⠀⠀⢸⡇⠀⡇⠀⢖⣔⣾⣾⡋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⣟⢿⣀⣿⣾⢿⣿⡇⠈⠁⠀⠀⠀⣿⣤⣧⠇⠀⠀⠀
Overview
This environment wraps ViZDoom scenarios and exposes them through the OpenEnv API. It provides:
- Visual observations: RGB or grayscale screen buffers
- Game variables: Health, ammo, kills, etc.
- Flexible action space: Discrete actions or button combinations
- Multiple scenarios: Built-in scenarios like "basic", "deadly_corridor", "defend_the_center", etc.
Quick Start
The simplest way to use the Doom environment is through the DoomEnv class:
from doom_env import DoomAction, DoomEnv
try:
# Create environment from Docker image
doom_env = DoomEnv.from_docker_image("doom-env:latest")
# Reset to start a new episode
result = doom_env.reset()
print(f"Screen shape: {result.observation.screen_shape}")
print(f"Available actions: {result.observation.available_actions}")
# Take actions
for i in range(100):
# Use discrete action (e.g., 0=no-op, 1-7=various actions)
result = doom_env.step(DoomAction(action_id=1))
# Optional: Render the game
doom_env.render() # Shows visualization window
print(f"Step {i}:")
print(f" Reward: {result.reward}")
print(f" Done: {result.observation.done}")
if result.observation.done:
print("Episode finished!")
break
finally:
# Always clean up
doom_env.close()
That's it! The DoomEnv.from_docker_image() method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call
close()
Web Interface
The Doom environment includes a built-in web interface for interactive testing and exploration. The web interface is enabled by default in the Docker image.
# Start the container with web interface (default)
docker run -p 8000:8000 doom-env:latest
# Or explicitly enable it
docker run -p 8000:8000 -e ENABLE_WEB_INTERFACE=true doom-env:latest
# Disable web interface (API only)
docker run -p 8000:8000 -e ENABLE_WEB_INTERFACE=false doom-env:latest
# Access the web interface in your browser:
# - Interactive UI: http://localhost:8000/web
# - API Documentation: http://localhost:8000/docs
# - Health Check: http://localhost:8000/health
The web interface provides:
- Interactive gameplay: Control the agent through a web UI
- Real-time visualization: See what the agent sees
- API explorer: Test all endpoints with OpenAPI/Swagger
- Environment info: View available actions, scenarios, and configuration
Note: When ENABLE_WEB_INTERFACE=false, only the core API endpoints are available (no /web interface).
Building the Docker Image
The Doom environment Docker image can be built in standalone mode using only public base images. This makes it suitable for CI/CD, GitHub, and HuggingFace deployments.
# Build from project root
docker build -t doom-env:latest -f src/envs/doom_env/server/Dockerfile src/envs/doom_env
# Or build from the doom_env directory
cd src/envs/doom_env
docker build -t doom-env:latest -f server/Dockerfile .
What gets installed:
The Dockerfile uses the pyproject.toml to install all dependencies:
- OpenEnv core: Installed as a dependency
- Core packages: FastAPI, Uvicorn, Pydantic, Requests (from pyproject.toml)
- ViZDoom: Installed with all system dependencies (SDL2, Boost, OpenGL, etc.)
- NumPy: For array operations
- Web interface support: Enabled by default via
ENABLE_WEB_INTERFACE=true
Build details:
- Base image:
python:3.11-slim(public) - Installation: Uses
pip install -ewith pyproject.toml - System deps: ViZDoom build tools and runtime libraries
- Size: ~1.5-2GB (includes ViZDoom system dependencies)
Scenarios Gallery
ViZDoom comes with multiple built-in scenarios for different research tasks:
Basic Scenario
Simple environment for learning basic movement and shooting mechanics.
Agent learning to navigate and shoot in the basic scenario
Deadly Corridor
Navigate through a corridor while avoiding or eliminating monsters.
Agent navigating the deadly corridor
Defend the Center
Stay alive as long as possible while defending the center position.
Agent defending the center against waves of enemies
Health Gathering
Collect health packs scattered around the environment to survive.
Agent collecting health packs for survival
Note: To generate these GIFs yourself, run:
cd src/envs/doom_env pip install numpy imageio vizdoom python generate_gifs.py
Environment Details
Action Space
Actions can be specified in two ways:
Discrete Actions (recommended for most use cases):
DoomAction(action_id=2) # Single integer actionAvailable discrete actions (depends on scenario):
0: No-op (do nothing)1-N: Various single button presses (move left, right, shoot, etc.)
Button Combinations:
DoomAction(buttons=[1, 0, 1, 0]) # Press specific buttonsEach element is 0 (not pressed) or 1 (pressed).
Observation Space
DoomObservation contains:
screen_buffer(List[int]): Flattened screen pixels- RGB: Shape [height, width, 3] before flattening
- Grayscale: Shape [height, width] before flattening
screen_shape(List[int]): Original shape of the screengame_variables(List[float]): Health, ammo, kills, etc.available_actions(List[int]): Valid action IDsepisode_finished(bool): Whether episode has endedreward(float): Reward from last actiondone(bool): Same as episode_finishedmetadata(dict): Additional info (scenario name, available buttons)
Scenarios
ViZDoom comes with several built-in scenarios:
- basic: Simple scenario to learn basic movement and shooting
- deadly_corridor: Navigate a corridor while avoiding/killing monsters
- defend_the_center: Stay alive as long as possible in the center
- defend_the_line: Defend a line against incoming monsters
- health_gathering: Collect health packs to survive
- my_way_home: Navigate to a specific location
- predict_position: Predict where an object will be
- take_cover: Learn to take cover from enemy fire
Advanced Usage
Custom Configuration
You can customize the environment when creating the server:
from doom_env.server.doom_env_environment import DoomEnvironment
# Create with custom settings
env = DoomEnvironment(
scenario="deadly_corridor",
screen_resolution="RES_320X240", # Higher resolution
screen_format="GRAY8", # Grayscale instead of RGB
window_visible=True, # Show game window
use_discrete_actions=True # Use discrete action space
)
Connecting to an Existing Server
If you already have a Doom environment server running:
from doom_env import DoomEnv
# Connect to existing server
doom_env = DoomEnv(base_url="http://localhost:8000")
# Use as normal
result = doom_env.reset()
result = doom_env.step(DoomAction(action_id=1))
Note: When connecting to an existing server, doom_env.close() will NOT stop the server.
Processing Visual Observations
The screen buffer is flattened for JSON serialization. To use it:
import numpy as np
result = doom_env.reset()
obs = result.observation
# Reshape to original dimensions
screen = np.array(obs.screen_buffer).reshape(obs.screen_shape)
# screen is now a numpy array with shape [height, width, channels]
# You can visualize it, pass to a neural network, etc.
Rendering
The Doom environment supports multiple rendering options depending on your use case:
Option 1: Web Interface (Recommended for Docker)
The easiest way to visualize the game when using Docker:
# Start the container with web interface
docker run -p 8000:8000 doom-env:latest
# Open in your browser:
# http://localhost:8000/web
Advantages:
- No local dependencies needed
- Works in browser
- Interactive controls
- Real-time visualization
Option 2: Client-Side Rendering (Docker Mode)
Render on your local machine using the screen buffer from Docker:
from doom_env import DoomAction, DoomEnv
env = DoomEnv.from_docker_image("doom-env:latest")
result = env.reset()
for _ in range(100):
result = env.step(DoomAction(action_id=1))
env.render() # Display using cv2 or matplotlib
env.close()
Requirements: Install rendering library on your local machine (not in Docker):
pip install opencv-python
# or
pip install matplotlib
Note: This downloads the screen buffer from Docker via HTTP and renders it locally. Works well but has some network overhead.
Option 3: Local Mode with Native Window (Best Performance)
For the fastest rendering, run locally with ViZDoom's native window:
from envs.doom_env.server.doom_env_environment import DoomEnvironment
from envs.doom_env.models import DoomAction
# Native ViZDoom window (most efficient)
env = DoomEnvironment(
scenario="basic",
window_visible=True, # Enable native SDL2 window
)
obs = env.reset()
for _ in range(100):
obs = env.step(DoomAction(action_id=1))
# No render() call needed - native window updates automatically
env.close()
Advantages:
- Native SDL2 rendering (fastest)
- No network overhead
- Smooth real-time gameplay
Rendering Dependencies
Install optional rendering dependencies:
# Using pip
pip install -e ".[rendering]"
# Or install individually
pip install opencv-python # Preferred for rendering
# or
pip install matplotlib # Fallback option
Render Modes
Both environments support two render modes:
mode="human"(default): Display in a windowmode="rgb_array": Return numpy array for custom processing
# Get frame as numpy array
frame = env.render(mode="rgb_array")
print(frame.shape) # e.g., (240, 320, 3)
Development & Testing
Local Development
Install dependencies and run locally without Docker:
# Install the environment in development mode
cd src/envs/doom_env
uv pip install -e .
# Or using pip
pip install -e .
# Run the server locally
uv run server --host 0.0.0.0 --port 8000
# Or using uvicorn directly
uvicorn server.app:app --reload
Testing
Test the environment logic directly:
# From the doom_env directory
python3 -c "
from server.doom_env_environment import DoomEnvironment
from models import DoomAction
env = DoomEnvironment(scenario='basic')
obs = env.reset()
print(f'Initial observation shape: {obs.screen_shape}')
for i in range(10):
obs = env.step(DoomAction(action_id=1))
print(f'Step {i}: reward={obs.reward}, done={obs.done}')
"
Running the Example Script
The example.py script demonstrates both Docker and local usage with rendering:
# Run with Docker (no rendering)
python example.py
# Run with Docker and rendering
python example.py --render
# Run locally without Docker
python example.py --local
# Run locally with rendering (uses native ViZDoom window)
python example.py --local --render
# Run for more steps
python example.py --local --render --steps 300
Deploying to Hugging Face Spaces
Deploy your Doom environment to Hugging Face Spaces:
# From the doom_env directory
openenv push
# Or specify options
openenv push --repo-id my-org/doom-env --private
The openenv push command will:
- Validate the environment setup
- Prepare for Hugging Face Docker space
- Upload to Hugging Face
After deployment, your space will include:
- Web Interface at
/web- Interactive UI - API Documentation at
/docs- OpenAPI/Swagger - Health Check at
/health- Monitoring
Project Structure
doom_env/
├── .dockerignore # Docker build exclusions
├── __init__.py # Module exports (DoomAction, DoomObservation, DoomEnv)
├── README.md # This file
├── GIF_GENERATION.md # Guide for generating scenario GIFs
├── openenv.yaml # OpenEnv manifest
├── pyproject.toml # Dependencies (vizdoom, numpy, etc.)
├── uv.lock # Locked dependencies
├── client.py # DoomEnv HTTP client
├── models.py # DoomAction and DoomObservation dataclasses
├── example.py # Example usage script
├── generate_gifs.py # Script to generate GIFs of scenarios
├── assets/ # Directory for generated GIFs
│ ├── .gitkeep
│ └── README.md # Assets directory documentation
└── server/
├── __init__.py # Server module exports
├── doom_env_environment.py # Core ViZDoom wrapper
├── app.py # FastAPI application
├── requirements.txt # Python dependencies for Docker
└── Dockerfile # Container with ViZDoom dependencies
Dependencies
- ViZDoom: Doom-based AI research platform
- NumPy: Array operations for screen buffers
- OpenEnv Core: Base framework
- FastAPI/Uvicorn: HTTP server
- System libraries: SDL2, Boost, OpenGL, etc. (handled in Dockerfile)
All dependencies are defined in pyproject.toml and automatically installed during Docker build.
Configuration
Environment Variables
The Docker container supports several environment variables for configuration:
Web Interface:
ENABLE_WEB_INTERFACE(default:true) - Enable/disable the web UI at/web
Doom Environment:
DOOM_SCENARIO(default:basic) - Which scenario to loadDOOM_SCREEN_RESOLUTION(default:RES_160X120) - Screen resolutionDOOM_SCREEN_FORMAT(default:RGB24) - Screen format (RGB24, GRAY8, etc.)DOOM_WINDOW_VISIBLE(default:false) - Show native ViZDoom window
Example:
docker run -p 8000:8000 \
-e ENABLE_WEB_INTERFACE=true \
-e DOOM_SCENARIO=deadly_corridor \
-e DOOM_SCREEN_RESOLUTION=RES_320X240 \
doom-env:latest
Troubleshooting
ViZDoom Installation Issues
If you encounter issues installing ViZDoom:
# Make sure you have system dependencies (Ubuntu/Debian)
sudo apt-get install cmake libboost-all-dev libsdl2-dev libfreetype6-dev
# Then install ViZDoom
pip install vizdoom
Docker Build Issues
If Docker build fails with ViZDoom dependencies:
- Ensure you have sufficient disk space
- Check that the base image is accessible
- Verify system dependencies in Dockerfile
Runtime Errors
- "Could not load scenario": Check scenario name or path
- "Invalid action_id": Ensure action_id is within valid range
- Screen buffer issues: Verify screen format and resolution settings
References
License
BSD 3-Clause License (see LICENSE file in repository root)





