Spaces:
Runtime error
Runtime error
Upload imdb_rnn.py
Browse files- imdb_rnn.py +65 -0
imdb_rnn.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import seaborn as sns
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from numpy import argmax
|
| 9 |
+
from tensorflow.keras import Sequential
|
| 10 |
+
from tensorflow.keras.layers import Dense
|
| 11 |
+
from tensorflow.keras.optimizers import RMSprop, Adam
|
| 12 |
+
from tensorflow.keras.datasets import imdb
|
| 13 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 14 |
+
from sklearn.metrics import accuracy_score
|
| 15 |
+
import pickle
|
| 16 |
+
|
| 17 |
+
top_words = 5000
|
| 18 |
+
(X_train, y_train), (X_test,y_test) = imdb.load_data(num_words=top_words)
|
| 19 |
+
|
| 20 |
+
max_review_length = 500
|
| 21 |
+
X_train = pad_sequences(X_train, maxlen=max_review_length)
|
| 22 |
+
X_test = pad_sequences(X_test, maxlen=max_review_length)
|
| 23 |
+
|
| 24 |
+
model=tf.keras.models.Sequential([
|
| 25 |
+
tf.keras.layers.Embedding(input_dim=top_words,output_dim= 24, input_length=max_review_length),
|
| 26 |
+
tf.keras.layers.SimpleRNN(24, return_sequences=False),
|
| 27 |
+
tf.keras.layers.Dense(64, activation='relu'),
|
| 28 |
+
tf.keras.layers.Dense(32, activation='relu'),
|
| 29 |
+
tf.keras.layers.Dense(1, activation='sigmoid')
|
| 30 |
+
])
|
| 31 |
+
|
| 32 |
+
# compile the model
|
| 33 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
| 34 |
+
|
| 35 |
+
print("---------------------- -------------------------\n")
|
| 36 |
+
|
| 37 |
+
# summarize the model
|
| 38 |
+
print(model.summary())
|
| 39 |
+
|
| 40 |
+
print("---------------------- -------------------------\n")
|
| 41 |
+
|
| 42 |
+
early_stop = tf.keras.callbacks.EarlyStopping(monitor='accuracy', mode='min', patience=10)
|
| 43 |
+
|
| 44 |
+
print("---------------------- Training -------------------------\n")
|
| 45 |
+
|
| 46 |
+
# fit the model
|
| 47 |
+
model.fit(x=X_train,
|
| 48 |
+
y=y_train,
|
| 49 |
+
epochs=100,
|
| 50 |
+
validation_data=(X_test, y_test),
|
| 51 |
+
callbacks=[early_stop]
|
| 52 |
+
)
|
| 53 |
+
print("---------------------- -------------------------\n")
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def acc_report(y_true, y_pred):
|
| 57 |
+
acc_sc = accuracy_score(y_true, y_pred)
|
| 58 |
+
print(f"Accuracy : {str(round(acc_sc,2)*100)}")
|
| 59 |
+
return acc_sc
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
preds = (model.predict(X_test) > 0.5).astype("int32")
|
| 63 |
+
print(acc_report(y_test, preds))
|
| 64 |
+
|
| 65 |
+
model.save(r'C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\RN.keras')
|