Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- Perceptron.py +46 -0
- __init__.py +46 -0
- imdb_perceptron.py +22 -0
Perceptron.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Perceptron:
|
| 6 |
+
|
| 7 |
+
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
|
| 8 |
+
self.bias = 0
|
| 9 |
+
self.learning_rate = learning_rate
|
| 10 |
+
self.max_epochs = epochs
|
| 11 |
+
self.activation_function = activation_function
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def activate(self, x):
|
| 15 |
+
if self.activation_function == 'step':
|
| 16 |
+
return 1 if x >= 0 else 0
|
| 17 |
+
elif self.activation_function == 'sigmoid':
|
| 18 |
+
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
|
| 19 |
+
elif self.activation_function == 'relu':
|
| 20 |
+
return 1 if max(0,x)>=0.5 else 0
|
| 21 |
+
|
| 22 |
+
def fit(self, X, y):
|
| 23 |
+
n_features = X.shape[1]
|
| 24 |
+
self.weights = np.random.randint(n_features, size=(n_features))
|
| 25 |
+
for epoch in tqdm(range(self.max_epochs)):
|
| 26 |
+
for i in range(len(X)):
|
| 27 |
+
inputs = X[i]
|
| 28 |
+
target = y[i]
|
| 29 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
| 30 |
+
prediction = self.activate(weighted_sum)
|
| 31 |
+
print("Training Completed")
|
| 32 |
+
|
| 33 |
+
def predict(self, X):
|
| 34 |
+
predictions = []
|
| 35 |
+
for i in range(len(X)):
|
| 36 |
+
inputs = X[i]
|
| 37 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
| 38 |
+
prediction = self.activate(weighted_sum)
|
| 39 |
+
predictions.append(prediction)
|
| 40 |
+
return predictions
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
__init__.py
CHANGED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Perceptron:
|
| 6 |
+
|
| 7 |
+
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
|
| 8 |
+
self.bias = 0
|
| 9 |
+
self.learning_rate = learning_rate
|
| 10 |
+
self.max_epochs = epochs
|
| 11 |
+
self.activation_function = activation_function
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def activate(self, x):
|
| 15 |
+
if self.activation_function == 'step':
|
| 16 |
+
return 1 if x >= 0 else 0
|
| 17 |
+
elif self.activation_function == 'sigmoid':
|
| 18 |
+
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
|
| 19 |
+
elif self.activation_function == 'relu':
|
| 20 |
+
return 1 if max(0,x)>=0.5 else 0
|
| 21 |
+
|
| 22 |
+
def fit(self, X, y):
|
| 23 |
+
n_features = X.shape[1]
|
| 24 |
+
self.weights = np.random.randint(n_features, size=(n_features))
|
| 25 |
+
for epoch in tqdm(range(self.max_epochs)):
|
| 26 |
+
for i in range(len(X)):
|
| 27 |
+
inputs = X[i]
|
| 28 |
+
target = y[i]
|
| 29 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
| 30 |
+
prediction = self.activate(weighted_sum)
|
| 31 |
+
print("Training Completed")
|
| 32 |
+
|
| 33 |
+
def predict(self, X):
|
| 34 |
+
predictions = []
|
| 35 |
+
for i in range(len(X)):
|
| 36 |
+
inputs = X[i]
|
| 37 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
| 38 |
+
prediction = self.activate(weighted_sum)
|
| 39 |
+
predictions.append(prediction)
|
| 40 |
+
return predictions
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
imdb_perceptron.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tensorflow.keras.datasets import imdb
|
| 2 |
+
from Perceptron import Perceptron
|
| 3 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 4 |
+
from sklearn.metrics import accuracy_score
|
| 5 |
+
import pickle
|
| 6 |
+
|
| 7 |
+
top_words = 5000
|
| 8 |
+
(X_train, y_train), (X_test,y_test) = imdb.load_data(num_words=top_words)
|
| 9 |
+
|
| 10 |
+
max_review_length = 500
|
| 11 |
+
X_train = pad_sequences(X_train, maxlen=max_review_length)
|
| 12 |
+
X_test = pad_sequences(X_test, maxlen=max_review_length)
|
| 13 |
+
|
| 14 |
+
percep = Perceptron(epochs=100)
|
| 15 |
+
|
| 16 |
+
percep.fit(X_train, y_train)
|
| 17 |
+
pred = percep.predict(X_test)
|
| 18 |
+
|
| 19 |
+
print(f"Accuracy : {accuracy_score(pred, y_test)}")
|
| 20 |
+
|
| 21 |
+
with open(r'C:\Users\shahi\Desktop\My Projects\DeepPredictorHub\PP.pkl','wb') as file:
|
| 22 |
+
pickle.dump(percep, file)
|