model-b-structured / README.md
radoslavralev's picture
Add new SentenceTransformer model
2232d2f verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:111468
- loss:MultipleNegativesRankingLoss
base_model: thenlper/gte-small
widget:
- source_sentence: What is something you do (or don’t do), even though you feel conflicted
about it?
sentences:
- What is something you do (or don’t do), even though you feel conflicted about
it?
- Is it worth buying the iPhone 7?
- 'Hypothetical scenarios: King Henry VIII loses his battle with James IV in 1513
& dies; Pope Julius II doesn''t die in 1513. How''s the world different?'
- source_sentence: Exams for a mechanical engineer?
sentences:
- Exams for a mechanical engineer?
- Can you prefer any website or ideas by which I can understand antenna subject
practically in b.tech?
- Mackenzie is a writer-in-residence at the 2B Theatre in Halifax and teaches at
the National Theatre School of Canada in Montreal .
- source_sentence: What will a Christian wife do if her husband left her for years?
sentences:
- How many United States Presidents have there been?
- What is planning without words?
- What will a Christian wife do if her husband left her for years?
- source_sentence: How do I research for MUN?
sentences:
- How do I research for MUN?
- What is the best way to be an investment banker?
- What is the best way to do an MUN research?
- source_sentence: I am poor, ugly, untalented, 20 years old, and have big dreams.
How can I succeed in life?
sentences:
- What app can I use taking notes?
- Am I too old to succeed in my life at age 32?
- I am poor, ugly, untalented, 20 years old, and have big dreams. How can I succeed
in life?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on thenlper/gte-small
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.3
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12000000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.068
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.58
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4950369328373354
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.43527777777777776
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4475531768839056
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.26
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.48
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.64
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.066
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.24
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.45
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.49
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4279054208986469
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3892142857142856
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3750113241088494
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.28
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.53
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.56
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.66
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.28
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.067
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.27
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.515
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5449999999999999
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.64
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.46147117686799116
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4122460317460317
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4112822504963775
name: Cosine Map@100
---
# SentenceTransformer based on thenlper/gte-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-small](https://huggingface.co/thenlper/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) <!-- at revision 17e1f347d17fe144873b1201da91788898c639cd -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/model-b-structured")
# Run inference
sentences = [
'I am poor, ugly, untalented, 20 years old, and have big dreams. How can I succeed in life?',
'I am poor, ugly, untalented, 20 years old, and have big dreams. How can I succeed in life?',
'Am I too old to succeed in my life at age 32?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.3917],
# [1.0000, 1.0000, 0.3917],
# [0.3917, 0.3917, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoMSMARCO` and `NanoNQ`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoMSMARCO | NanoNQ |
|:--------------------|:------------|:-----------|
| cosine_accuracy@1 | 0.3 | 0.26 |
| cosine_accuracy@3 | 0.58 | 0.48 |
| cosine_accuracy@5 | 0.6 | 0.52 |
| cosine_accuracy@10 | 0.68 | 0.64 |
| cosine_precision@1 | 0.3 | 0.26 |
| cosine_precision@3 | 0.1933 | 0.1667 |
| cosine_precision@5 | 0.12 | 0.108 |
| cosine_precision@10 | 0.068 | 0.066 |
| cosine_recall@1 | 0.3 | 0.24 |
| cosine_recall@3 | 0.58 | 0.45 |
| cosine_recall@5 | 0.6 | 0.49 |
| cosine_recall@10 | 0.68 | 0.6 |
| **cosine_ndcg@10** | **0.495** | **0.4279** |
| cosine_mrr@10 | 0.4353 | 0.3892 |
| cosine_map@100 | 0.4476 | 0.375 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"dataset_id": "lightonai/NanoBEIR-en"
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.28 |
| cosine_accuracy@3 | 0.53 |
| cosine_accuracy@5 | 0.56 |
| cosine_accuracy@10 | 0.66 |
| cosine_precision@1 | 0.28 |
| cosine_precision@3 | 0.18 |
| cosine_precision@5 | 0.114 |
| cosine_precision@10 | 0.067 |
| cosine_recall@1 | 0.27 |
| cosine_recall@3 | 0.515 |
| cosine_recall@5 | 0.545 |
| cosine_recall@10 | 0.64 |
| **cosine_ndcg@10** | **0.4615** |
| cosine_mrr@10 | 0.4122 |
| cosine_map@100 | 0.4113 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 111,468 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.11 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.16 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.35 tokens</li><li>max: 76 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|
| <code>How many grams of protein should I eat a day?</code> | <code>How much protein should I eat per day?</code> | <code>How does hypokalemia lead to polyuria in primary aldosteronism?</code> |
| <code>Who said to get out of economic crisis we need to buy more?</code> | <code>Who said to get out of economic crisis we need to buy more?</code> | <code>What are some good IT certifications that don't require programming skills?</code> |
| <code>What is the difference between Chinese and western culture within China?</code> | <code>What is the difference between Chinese and western culture within China?</code> | <code>What is the difference between Chinese and western culture outside China?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 7.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 12,386 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.22 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.28 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.39 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
| <code>What is it about novels that allow them to deal with deep themes that short stories, drama, and poetry cannot achieve?</code> | <code>What is it about novels that allow them to deal with deep themes that short stories, drama, and poetry cannot achieve?</code> | <code>What are films that deal with themes like death and letting go?</code> |
| <code>If alien civilizations are thought to be much more advanced than us, why haven't they made contact with us yet?</code> | <code>If there are super intelligent alien beings somewhere in the Galaxy why haven't they tried to contact us yet?</code> | <code>What's not so good about Aston Martin cars?</code> |
| <code>How can you determine the Lewis dot structure for sulfur trioxide?</code> | <code>How can you determine the Lewis dot structure for sulfur trioxide?</code> | <code>How can you determine the Lewis dot structure for sulfur?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 7.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `max_steps`: 3000
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `load_best_model_at_end`: True
- `optim`: adamw_torch
- `ddp_find_unused_parameters`: False
- `push_to_hub`: True
- `hub_model_id`: redis/model-b-structured
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 3000
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 1
- `dataloader_prefetch_factor`: 1
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/model-b-structured
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:|
| 0 | 0 | - | 3.6560 | 0.6259 | 0.6583 | 0.6421 |
| 0.2874 | 250 | 2.1436 | 0.4823 | 0.5264 | 0.5634 | 0.5449 |
| 0.5747 | 500 | 0.5891 | 0.4299 | 0.5280 | 0.5051 | 0.5165 |
| 0.8621 | 750 | 0.5393 | 0.4123 | 0.5246 | 0.4755 | 0.5001 |
| 1.1494 | 1000 | 0.5173 | 0.4027 | 0.5068 | 0.4549 | 0.4809 |
| 1.4368 | 1250 | 0.5022 | 0.3954 | 0.5055 | 0.4513 | 0.4784 |
| 1.7241 | 1500 | 0.4958 | 0.3909 | 0.5033 | 0.4466 | 0.4749 |
| 2.0115 | 1750 | 0.4908 | 0.3890 | 0.4897 | 0.4416 | 0.4656 |
| 2.2989 | 2000 | 0.4824 | 0.3859 | 0.4912 | 0.4359 | 0.4636 |
| 2.5862 | 2250 | 0.4797 | 0.3847 | 0.4987 | 0.4387 | 0.4687 |
| 2.8736 | 2500 | 0.4728 | 0.3834 | 0.4969 | 0.4256 | 0.4613 |
| 3.1609 | 2750 | 0.4721 | 0.3824 | 0.4863 | 0.4279 | 0.4571 |
| 3.4483 | 3000 | 0.4694 | 0.3822 | 0.4950 | 0.4279 | 0.4615 |
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 2.21.0
- Tokenizers: 0.22.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->