SentenceTransformer based on jinaai/jina-embeddings-v2-base-en
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v2-base-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'JinaBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'How can I generate text with OLMo3 directly from the command line?',
'Context: OLMo3\n\n# OLMo3\n\nOlmo3 is an improvement on OLMo2. More details will be released on *soon*.\n\n> !TIP\n> Click on the OLMo3 models in the right sidebar for more examples of how to apply OLMo3 to different language tasks.\n\nThe example below demonstrates how to generate text with `Pipeline`, `AutoModel` and from the command line.',
'Context: Text generation\n\n# Text generation\n\n[open-in-colab]\n\nText generation is the most popular application for large language models (LLMs). A LLM is trained to generate the next word (token) given some initial text (prompt) along with its own generated outputs up to a predefined length or when it reaches an end-of-sequence (`EOS`) token.\n\nIn Transformers, the `~GenerationMixin.generate` API handles text generation, and it is available for all models with generative capabilities. This guide will show you the basics of text generation with `~GenerationMixin.generate` and some common pitfalls to avoid.\n\n> !TIP\n> You can also chat with a model directly from the command line. (reference(transformers-endocs/conversations#transformers))\n>\n> ```shell\n> transformers chat Qwen/Qwen2.5-0.5B-Instruct\n> ```',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6064, 0.4927],
# [0.6064, 1.0000, 0.3680],
# [0.4927, 0.3680, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 15,019 training samples
- Columns:
sentence_0,sentence_1, andsentence_2 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 12 tokens
- mean: 20.33 tokens
- max: 54 tokens
- min: 7 tokens
- mean: 190.29 tokens
- max: 512 tokens
- min: 9 tokens
- mean: 170.79 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 sentence_2 What does the documentation say about 'GPTBigCodeForCausalLM'?Context: GPTBigCode > GPTBigCodeForCausalLM
## GPTBigCodeForCausalLM
[autodoc] GPTBigCodeForCausalLM
- forwardContext: Glossary > N > Natural language processing (NLP)
### Natural language processing (NLP)
A generic way to say "deal with texts".How do I use or implement 'Local Self Attention' according to the provided text?Context: Reformer > Usage tips > Local Self Attention
### Local Self Attention
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
chunked so that in each chunk of lengthconfig.local_chunk_lengththe query embedding vectors only attends to
the key embedding vectors in its chunk and to the key embedding vectors ofconfig.local_num_chunks_before
previous neighboring chunks andconfig.local_num_chunks_afterfollowing neighboring chunks.
Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
$\mathcal{O}(n_s \times n_s)$ to $\mathcal{O}(n_s \times \log(n_s))$, which usually represents the memory
and time bottleneck in a transformer model, with $n_s$ being the sequence length.Context: Contributing a new model to Transformers > Implementing a modular file > Attention
### Attention
The modularOlmo2Attentionis shown below.
```py
from ..llama.modeling_llama import eager_attention_forward
from ..olmo.modeling_olmo import OlmoAttention, apply_rotary_pos_emb
# Olmo2 attention is identical to OLMo attention except:
# - Norm is applied to attention queries and keys.
# - No qkv clipping.
class Olmo2Attention(OlmoAttention):
def init(self, config: Olmo2Config, layer_idx: Optionalint = None):
super().init(config, layer_idx=layer_idx)
self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tupletorch.Tensor, torch.Tensor,
attention_mask: Optionaltorch.Tensor,
past_key_values: OptionalCache...Explain the 'model-specific feature extractor' section within 'Feature extractors > Feature extractor classes > AutoFeatureExtractor'.Context: Feature extractors > Feature extractor classes > AutoFeatureExtractor > model-specific feature extractor
#### model-specific feature extractor
Every pretrained audio model has a specific associated feature extractor for correctly processing audio data. When you load a feature extractor, it retrieves the feature extractors configuration (feature size, chunk length, etc.) from preprocessor_config.json(https://hf.co/openai/whisper-tiny/blob/main/preprocessor_config.json).
A feature extractor can be loaded directly from its model-specific class.py<br>from transformers import WhisperFeatureExtractor<br><br>feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-tiny")<br>Context: Feature extractors > Feature extractor classes > AutoFeatureExtractor
#### AutoFeatureExtractor
The AutoClass API automatically loads the correct feature extractor for a given model.
Use~AutoFeatureExtractor.from_pretrainedto load a feature extractor.py<br>from transformers import AutoFeatureExtractor<br><br>feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny")<br> - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.2662 | 500 | 0.9802 |
| 0.5325 | 1000 | 0.278 |
| 0.7987 | 1500 | 0.2026 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Model tree for fyerfyer/finetune-jina-transformers-v1
Base model
jinaai/jina-embeddings-v2-base-en