SentenceTransformer based on jinaai/jina-embeddings-v2-base-en

This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v2-base-en. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embeddings-v2-base-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'JinaBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'How can I generate text with OLMo3 directly from the command line?',
    'Context: OLMo3\n\n# OLMo3\n\nOlmo3 is an improvement on OLMo2. More details will be released on *soon*.\n\n> !TIP\n> Click on the OLMo3 models in the right sidebar for more examples of how to apply OLMo3 to different language tasks.\n\nThe example below demonstrates how to generate text with `Pipeline`, `AutoModel` and from the command line.',
    'Context: Text generation\n\n# Text generation\n\n[open-in-colab]\n\nText generation is the most popular application for large language models (LLMs). A LLM is trained to generate the next word (token) given some initial text (prompt) along with its own generated outputs up to a predefined length or when it reaches an end-of-sequence (`EOS`) token.\n\nIn Transformers, the `~GenerationMixin.generate` API handles text generation, and it is available for all models with generative capabilities. This guide will show you the basics of text generation with `~GenerationMixin.generate` and some common pitfalls to avoid.\n\n> !TIP\n> You can also chat with a model directly from the command line. (reference(transformers-endocs/conversations#transformers))\n>\n> ```shell\n> transformers chat Qwen/Qwen2.5-0.5B-Instruct\n> ```',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6064, 0.4927],
#         [0.6064, 1.0000, 0.3680],
#         [0.4927, 0.3680, 1.0000]])

Training Details

Training Dataset

Unnamed Dataset

  • Size: 15,019 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 12 tokens
    • mean: 20.33 tokens
    • max: 54 tokens
    • min: 7 tokens
    • mean: 190.29 tokens
    • max: 512 tokens
    • min: 9 tokens
    • mean: 170.79 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    What does the documentation say about 'GPTBigCodeForCausalLM'? Context: GPTBigCode > GPTBigCodeForCausalLM

    ## GPTBigCodeForCausalLM

    [autodoc] GPTBigCodeForCausalLM
    - forward
    Context: Glossary > N > Natural language processing (NLP)

    ### Natural language processing (NLP)

    A generic way to say "deal with texts".
    How do I use or implement 'Local Self Attention' according to the provided text? Context: Reformer > Usage tips > Local Self Attention

    ### Local Self Attention

    Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
    chunked so that in each chunk of length config.local_chunk_length the query embedding vectors only attends to
    the key embedding vectors in its chunk and to the key embedding vectors of config.local_num_chunks_before
    previous neighboring chunks and config.local_num_chunks_after following neighboring chunks.

    Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
    $\mathcal{O}(n_s \times n_s)$ to $\mathcal{O}(n_s \times \log(n_s))$, which usually represents the memory
    and time bottleneck in a transformer model, with $n_s$ being the sequence length.
    Context: Contributing a new model to Transformers > Implementing a modular file > Attention

    ### Attention

    The modular Olmo2Attention is shown below.

    ```py
    from ..llama.modeling_llama import eager_attention_forward
    from ..olmo.modeling_olmo import OlmoAttention, apply_rotary_pos_emb

    # Olmo2 attention is identical to OLMo attention except:
    # - Norm is applied to attention queries and keys.
    # - No qkv clipping.
    class Olmo2Attention(OlmoAttention):
    def init(self, config: Olmo2Config, layer_idx: Optionalint = None):
    super().init(config, layer_idx=layer_idx)
    self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
    self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)

    def forward(
    self,
    hidden_states: torch.Tensor,
    position_embeddings: tupletorch.Tensor, torch.Tensor,
    attention_mask: Optionaltorch.Tensor,
    past_key_values: OptionalCache...
    Explain the 'model-specific feature extractor' section within 'Feature extractors > Feature extractor classes > AutoFeatureExtractor'. Context: Feature extractors > Feature extractor classes > AutoFeatureExtractor > model-specific feature extractor

    #### model-specific feature extractor

    Every pretrained audio model has a specific associated feature extractor for correctly processing audio data. When you load a feature extractor, it retrieves the feature extractors configuration (feature size, chunk length, etc.) from preprocessor_config.json(https://hf.co/openai/whisper-tiny/blob/main/preprocessor_config.json).

    A feature extractor can be loaded directly from its model-specific class.

    py<br>from transformers import WhisperFeatureExtractor<br><br>feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-tiny")<br>
    Context: Feature extractors > Feature extractor classes > AutoFeatureExtractor

    #### AutoFeatureExtractor

    The AutoClass API automatically loads the correct feature extractor for a given model.

    Use ~AutoFeatureExtractor.from_pretrained to load a feature extractor.

    py<br>from transformers import AutoFeatureExtractor<br><br>feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny")<br>
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • num_train_epochs: 1
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss
0.2662 500 0.9802
0.5325 1000 0.278
0.7987 1500 0.2026

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.9.0+cu126
  • Accelerate: 1.12.0
  • Datasets: 4.0.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for fyerfyer/finetune-jina-transformers-v1

Finetuned
(5)
this model

Space using fyerfyer/finetune-jina-transformers-v1 1