zero-shot-label-nli / README.md
sileod's picture
Update README.md
ee693db verified
metadata
license: other
task_categories:
  - zero-shot-classification
  - text-classification
task_ids:
  - natural-language-inference
language:
  - en
dataset_info:
  - config_name: default
    features:
      - name: labels
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: task
        dtype: string
    splits:
      - name: train
        num_bytes: 551417533
        num_examples: 1090333
      - name: validation
        num_bytes: 10825569
        num_examples: 14419
      - name: test
        num_bytes: 9738922
        num_examples: 14680
    download_size: 302498339
    dataset_size: 571982024
  - config_name: triplet
    features:
      - name: anchor
        dtype: string
      - name: positive
        dtype: string
      - name: negative
        dtype: string
      - name: task
        dtype: string
    splits:
      - name: test
        num_bytes: 10050046
        num_examples: 14680
      - name: train
        num_bytes: 575001580
        num_examples: 1090333
      - name: validation
        num_bytes: 11131262
        num_examples: 14419
    download_size: 306347488
    dataset_size: 596182888
configs:
  - config_name: default
    data_files:
      - split: test
        path: data/test-*
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
  - config_name: triplet
    data_files:
      - split: test
        path: triplet/test-*
      - split: train
        path: triplet/train-*
      - split: validation
        path: triplet/validation-*

tasksource classification tasks recasted as natural language inference. This dataset is intended to improve label understanding in zero-shot classification HF pipelines.

Inputs that are text pairs are separated by a newline (\n).

from transformers import pipeline
classifier = pipeline(model="sileod/deberta-v3-base-tasksource-nli")
classifier(
    "I have a problem with my iphone that needs to be resolved asap!!",
    candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
)

deberta-v3-base-tasksource-nli now includes label-nli in its training mix (a relatively small portion, to keep the model general, but note that nli models work for label-like zero shot classification without specific supervision (https://aclanthology.org/D19-1404.pdf).

@article{sileo2023tasksource,
  title={tasksource: A Dataset Harmonization Framework for Streamlined NLP Multi-Task Learning and Evaluation},
  author={Sileo, Damien},
  year={2023}
}