Dataset Viewer
Auto-converted to Parquet Duplicate
domain
stringlengths
3
253
pc1_score
float64
-0.56
2.58
0.0
0.625925
0.0.127
0.415994
0.1
0.341654
0.1.winjs.microsoft
0.293623
0.168.192
0.737819
0.2
0.640567
0.3
0.50381
0.4
0.579876
0.cc-by-sa-3
0.721777
0.da
0.536672
0.de
0.583318
0.en
0.445883
0.es
0.567466
0.fr
0.573358
0.it
0.541111
0.ja
0.482366
0.ko
0.564585
0.nl
0.602715
0.sv
0.569479
0.www
0.638364
00.0
0.685369
00.00-6.8
0.156512
00.000
0.31106
00.10
0.559981
00.12
0.595322
00.13
0.591744
00.14
0.539776
00.15
0.565904
00.16
0.594884
00.17
0.633461
00.18
0.589094
00.19
0.715127
00.20
0.562284
00.21
0.664101
00.22
0.577293
00.25
0.320283
00.30
0.326616
00.300
0.313987
00.40
0.281753
00.50
0.342135
00.500
0.313222
00.850
0.345314
00.9
0.606568
000.000.1
0.348702
000.1
0.480914
000.10
0.405489
000.12
0.394867
000.2
0.356102
000.30
0.418364
000.300
0.447524
000.4
0.308534
000.5
0.494386
000.50
0.661155
000.6
0.507634
000.www
0.501092
0000.www
0.527527
0067.313.408
0.401861
0099.jnf.800
0.639909
01.0.127
0.653609
02.15
0.489143
0399284370.tel
0.473959
06.ria15
0.516848
0895dfe8db67f9409db285590d870edd.key
0.30812
0rg.doi
0.329082
1.0.0.0.10
0.379672
1.0.168.192
0.485736
1.1
0.384602
1.1.168.192
0.601958
1.127
0.565867
1.168.192
0.597007
1.2
0.468184
1.244.10
0.615046
1.4
0.319656
1.4.3
0.508692
1.5
0.425799
1.7
0.626678
1.de
0.425136
1.en
0.437869
1.es
0.473066
1.fr
0.485277
1.it
0.51643
1.ja
0.522201
1.jxd
0.493517
1.ko
0.626393
1.nl
0.66496
1.no
0.597195
1.pt
0.464012
1.template
0.566082
1.test
0.633804
1.www
0.598391
10.10
0.44475
1001.10
0.638149
1001.10.doi
0.580976
1001.10.org.doi
0.226989
1002.10
0.634419
1002.10.doi
0.369012
1002.10.org.doi
0.511105
1002.org10.doi
0.577964
1006.10
0.591657
1007.10
0.704979
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset Card for CrediPred

CrediPred is the set of inferred scores developed by our graph-based models.

  • For more details on our graph neural network (GNN)-based model architectures, refer to CrediPred - GitHub.
  • These credibility scores can be used to augment fact-checking or general web retrieval pipelines, considering their current weakness in understanding which retrieved documents to weigh more than others.

Dataset Details

Dataset Description

The CrediPred dataset is the set of inferred credibility scores output by our trained GNN-based models. It follows the same time granularity -- monthly -- as the webgraphs we use to train these models. Scores are available for all nodes in the corresponding month's webgraph (for more information about our webgraps, refer to CrediGraph - GitHub.

  • Curated by a team of collaborators from the Complex Data Lab @ Mila - Quebec AI Institute, the University of Oxford, McGill University, Concordia University, UC Berkeley, University of Montreal, and AITHYRA.
  • Funding: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the AI Security Institute (AISI) grant: Towards Trustworthy AI Agents for Information Veracity and the EPSRC Turing AI World-Leading Research Fellowship No. EP/X040062/1 and EPSRC AI Hub No. EP/Y028872/1. This research was also enabled in part by compute resources provided by Mila (mila.quebec) and Compute Canada.
  • License: CC-BY-4.0 (as retributed from Common Crawl).

Dataset Sources

Downloads last month
24

Space using credi-net/CrediPred 1

Paper for credi-net/CrediPred