|
|
--- |
|
|
license: etalab-2.0 |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
task_categories: |
|
|
- image-segmentation |
|
|
pretty_name: FLAIR-HUB |
|
|
tags: |
|
|
- Multimodal |
|
|
- Earth Observation |
|
|
- Remote Sensing |
|
|
- Aerial |
|
|
- Satellite |
|
|
- Environement |
|
|
- LandCover |
|
|
- Agriculture |
|
|
--- |
|
|
|
|
|
# FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping |
|
|
|
|
|
FLAIR-HUB builds upon and includes the FLAIR#1 and FLAIR#2 datasets, expanding them into a unified, large-scale, multi-sensor land-cover resource with very-high-resolution |
|
|
annotations. Spanning over 2,500 km² of diverse French ecoclimates and landscapes, it features 63 billion hand-annotated pixels across 19 land-cover and |
|
|
23 crop type classes.<br> |
|
|
The dataset integrates complementary data sources including aerial imagery, SPOT and Sentinel satellites, surface models, and historical aerial photos, |
|
|
offering rich spatial, spectral, and temporal diversity. FLAIR-HUB supports the development of semantic segmentation, multimodal fusion, and self-supervised |
|
|
learning methods, and will continue to grow with new modalities and annotations. |
|
|
|
|
|
|
|
|
<p align="center"><img src="datacard_imgs/FLAIR-HUB_Overview.png" alt="" style="width:70%;max-width:1600px;" /></p> |
|
|
<hr> |
|
|
|
|
|
## 🔗 Links |
|
|
|
|
|
📄 <a href="https://arxiv.org/abs/2506.07080" target="_blank"><b>Dataset Preprint</b></a><br> |
|
|
📄 <a href="https://huggingface.co/papers/2508.10894" target="_blank"><b>MAESTRO Paper (using this dataset)</b></a><br> |
|
|
📁 <a href="https://storage.gra.cloud.ovh.net/v1/AUTH_366279ce616242ebb14161b7991a8461/defi-ia/flair_hub/FLAIR-HUB_TOY_DATASET.zip" target="_blank"><b>Toy dataset (~750MB) -direct download-</b></a><br> |
|
|
💻 <a href="https://github.com/IGNF/FLAIR-HUB" target="_blank"><b>Source Code (GitHub)</b></a><br> |
|
|
💻 <a href="https://github.com/ignf/maestro" target="_blank"><b>MAESTRO Code (GitHub, uses this dataset)</b></a><br> |
|
|
🏠 <a href="https://ignf.github.io/FLAIR/" target="_blank"><b>FLAIR datasets page </b></a><br> |
|
|
✉️ <a href="mailto:[email protected]"><b>Contact Us</b></a> – [email protected] – Questions or collaboration inquiries welcome!<br> |
|
|
<hr> |
|
|
|
|
|
## 🎯 Key Figures |
|
|
|
|
|
|
|
|
<table> |
|
|
<tr><td>🗺️</td><td>ROI / Area Covered</td><td>➡️ 2,822 ROIs / 2,528 km²</td></tr> |
|
|
<tr><td>🧠</td><td>Modalities</td><td>➡️ 6 modalities</td></tr> |
|
|
<tr><td>🏛️</td><td>Departments (France)</td><td>➡️ 74</td></tr> |
|
|
<tr><td>🧩</td><td>AI Patches (512×512 px @ 0.2m)</td><td>➡️ 241,100</td></tr> |
|
|
<tr><td>🖼️</td><td>Annotated Pixels</td><td>➡️ 63.2 billion</td></tr> |
|
|
<tr><td>🛰️</td><td>Sentinel-2 Acquisitions</td><td>➡️ 256,221</td></tr> |
|
|
<tr><td>📡</td><td>Sentinel-1 Acquisitions</td><td>➡️ 532,696</td></tr> |
|
|
<tr><td>📁</td><td>Total Files</td><td>➡️ ~2.5 million</td></tr> |
|
|
<tr><td>💾</td><td>Total Dataset Size</td><td>➡️ ~750 GB</td></tr> |
|
|
</table> |
|
|
<hr> |
|
|
|
|
|
|
|
|
## 🗃️ Dataset Structure |
|
|
|
|
|
``` |
|
|
data/ |
|
|
├── DOMAIN_SENSOR_DATATYPE/ |
|
|
│ ├── ROI/ |
|
|
│ │ ├── <Patch>.tif # image file |
|
|
│ │ ├── <Patch>.tif |
|
|
| | ├── ... |
|
|
│ └── ... |
|
|
├── ... |
|
|
├── DOMAIN_SENSOR_LABEL-XX/ |
|
|
│ ├── ROI/ |
|
|
│ │ ├── <Patch>.tif # supervision file |
|
|
│ │ ├── <Patch>.tif |
|
|
│ └── ... |
|
|
├── ... |
|
|
└── GLOBAL_ALL_MTD/ |
|
|
├── GLOABAL_SENSOR_MTD.gpkg # metadata file |
|
|
├── GLOABAL_SENSOR_MTD.gpkg |
|
|
└── ... |
|
|
``` |
|
|
|
|
|
|
|
|
## 🗂️ Data Modalities Overview |
|
|
|
|
|
<center> |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Modality</th> |
|
|
<th>Description</th> |
|
|
<th style="text-align: center">Resolution / Format</th> |
|
|
<th style="text-align: center">Metadata</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td><strong>BD ORTHO (AERIAL_RGBI)</strong></td> |
|
|
<td>Orthorectified aerial images with 4 bands (R, G, B, NIR).</td> |
|
|
<td style="text-align: center">20 cm, 8-bit unsigned</td> |
|
|
<td style="text-align: center">Radiometric stats, acquisition dates/cameras</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>BD ORTHO HISTORIQUE (AERIAL-RLT_PAN)</strong></td> |
|
|
<td>Historical panchromatic aerial images (1947–1965), resampled.</td> |
|
|
<td style="text-align: center">~40 cm, real: 0.4–1.2 m, 8-bit</td> |
|
|
<td style="text-align: center">Dates, original image references</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>ELEVATION (DEM_ELEV)</strong></td> |
|
|
<td>Elevation data with DSM (surface) and DTM (terrain) channels.</td> |
|
|
<td style="text-align: center">DSM: 20 cm, DTM: 1 m, Float32</td> |
|
|
<td style="text-align: center">Object heights via DSM–DTM difference</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>SPOT (SPOT_RGBI)</strong></td> |
|
|
<td>SPOT 6-7 satellite images, 4 bands, calibrated reflectance.</td> |
|
|
<td style="text-align: center">1.6 m (resampled)</td> |
|
|
<td style="text-align: center">Acquisition dates, radiometric stats</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>SENTINEL-2 (SENTINEL2_TS)</strong></td> |
|
|
<td>Annual time series with 10 spectral bands, calibrated reflectance.</td> |
|
|
<td style="text-align: center">10.24 m (resampled)</td> |
|
|
<td style="text-align: center">Dates, radiometric stats, cloud/snow masks</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>SENTINEL-1 ASC/DESC (SENTINEL1-XXX_TS)</strong></td> |
|
|
<td>Radar time series (VV, VH), SAR backscatter (σ0).</td> |
|
|
<td style="text-align: center">10.24 m (resampled)</td> |
|
|
<td style="text-align: center">Stats per ascending/descending series</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>LABELS CoSIA (AERIAL_LABEL-COSIA)</strong></td> |
|
|
<td>Land cover labels from aerial RGBI photo-interpretation.</td> |
|
|
<td style="text-align: center">20 cm, 15–19 classes</td> |
|
|
<td style="text-align: center">Aligned with BD ORTHO, patch statistics</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><strong>LABELS LPIS (ALL_LABEL-LPIS)</strong></td> |
|
|
<td>Crop type data from CAP declarations, hierarchical class structure.</td> |
|
|
<td style="text-align: center">20 cm</td> |
|
|
<td style="text-align: center">Aligned with BD ORTHO, may differ from CoSIA</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
</center> |
|
|
|
|
|
<p align="center"><img src="datacard_imgs/FLAIR-HUB_Patches_Hori.png" alt="" style="width:100%;max-width:1300px;" /></p> |
|
|
<hr> |
|
|
|
|
|
## 🏷️ Supervision |
|
|
|
|
|
FLAIR-HUB includes two complementary supervision sources: AERIAL_LABEL-COSIA, a high-resolution land cover annotation derived from expert photo-interpretation |
|
|
of RGBI imagery, offering pixel-level precision across 19 classes; and AERIAL_LABEL-LPIS, a crop-type annotation based on farmer-declared parcels |
|
|
from the European Common Agricultural Policy, structured into a three-level taxonomy of up to 46 crop classes. While COSIA reflects actual land cover, |
|
|
LPIS captures declared land use, and the two differ in purpose, precision, and spatial alignment. |
|
|
|
|
|
<p align="center"><img src="datacard_imgs/FLAIR-HUB_Labels.png" alt="" style="width:70%;max-width:1300px;" /></p> |
|
|
<hr> |
|
|
|
|
|
|
|
|
## 🌍 Spatial partition |
|
|
|
|
|
FLAIR-HUB uses an <b>official split for benchmarking, corresponding to the split_1 fold</b>. |
|
|
|
|
|
</div> |
|
|
|
|
|
<div style="flex: 60%; margin: auto;""> |
|
|
<table border="1"> |
|
|
<tr> |
|
|
<th><font color="#c7254e">TRAIN / VALIDATION </font></th> |
|
|
<td>D004, D005, D006, D007, D008, D009, D010, D011, D013, D014, D016, D017, D018, D020, D021, D023, D024047, D025039, D029, |
|
|
D030, D031, D032, D033, D034, D035, D037, D038, D040, D041, D044, D045, D046, D049, D051, D052, D054057, D055, D056, D058, D059062, |
|
|
D060, D063, D065, D066, D067, D070, D072, D074, D077, D078, D080, D081, D086, D091</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<th><font color="#c7254e">TEST</font></th> |
|
|
<td>D012, D015, D022, D026, D036, D061, D064, D068, D069, D071, D073, D075, D076, D083, D084, D085</td> |
|
|
</tr> |
|
|
</table> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
<p align="center"><img src="datacard_imgs/FLAIR-HUB_splits_oneline.png" alt="" style="width:80%;max-width:1300px;" /></p> |
|
|
<hr> |
|
|
|
|
|
## 🏆 Bechmark scores |
|
|
|
|
|
|
|
|
Several model configurations were trained (see the accompanying data paper). |
|
|
The best-performing configurations for both land-cover and crop-type classification tasks are summarized below: |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
Task | Model ID | mIoU | O.A. |
|
|
:------------ | :------------- | :-----------| :--------- |
|
|
🗺️ Land-cover | LC-L | 65.8 | 78.2 |
|
|
🌾 Crop-types | LPIS-I | 39.2 | 87.2 |
|
|
|
|
|
</div> |
|
|
|
|
|
The **Model ID** can be used to retrieve the corresponding pre-trained model from the FLAIR-HUB-MODELS collection. |
|
|
|
|
|
🗺️ Land-cover |
|
|
|
|
|
| Model ID | Aerial VHR | Elevation | SPOT | S2 t.s. | S1 t.s. | Historical | PARA. | EP. | O.A. | mIoU | |
|
|
|----------|------------|-----------|------|---------|---------|------------|--------|-----|------|------| |
|
|
| LC-A | ✓ | | | | | | 89.4 | 79 | 77.5 | 64.1 | |
|
|
| LC-B | ✓ | ✓ | | | | | 181.4 | 124 | 78.1 | 65.1 | |
|
|
| LC-C | ✓ | ✓ | ✓ | | | | 270.6 | 129 | 78.2 | 65.2 | |
|
|
| LC-D | ✓ | | | ✓ | | | 93.9 | 85 | 77.6 | 64.7 | |
|
|
| LC-E | ✓ | | | | ✓ | | 95.8 | 98 | 77.7 | 64.5 | |
|
|
| LC-F | ✓ | | | ✓ | ✓ | | 97.7 | 64 | 77.7 | 64.9 | |
|
|
| LC-G | | | | ✓ | | | 0.9 | 89 | 57.8 | 34.2 | |
|
|
| LC-H | | | | | ✓ | | 1.8 | 106 | 54.5 | 28.2 | |
|
|
| LC-I | | | ✓ | | | | 89.2 | 94 | 64.1 | 43.5 | |
|
|
| LC-J | | ✓ | | | | | 89.4 | 97 | 67.4 | 51.2 | |
|
|
| LC-K | ✓ | | | | | ✓ | 181.4 | 45 | 77.6 | 64.3 | |
|
|
| LC-L | ✓ | ✓ | ✓ | ✓ | ✓ | | 276.4 | 121 | **78.2** | **65.8** | |
|
|
| LC-ALL | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 365.8 | 129 | **78.2** | 65.6 | |
|
|
|
|
|
🌾 Crop-types |
|
|
|
|
|
| Model ID | Aerial VHR | SPOT | S2 t.s. | S1 t.s. | PARA. | EP. | O.A. | mIoU | |
|
|
|----------|------------|------|---------|---------|--------|-----|------|------| |
|
|
| **LV.1 - 23 classes (2 classes removed)** ||||||||| |
|
|
| LPIS-A | ✓ | | | | 89.4 | 91 | 86.6 | 24.4 | |
|
|
| LPIS-B | ✓ | ✓ | | | 181.2 | 99 | 87.1 | 26.1 | |
|
|
| LPIS-C | ✓ | | ✓ | | 93.9 | 100 | 87.5 | 29.8 | |
|
|
| LPIS-D | ✓ | | ✓ | ✓ | 97.7 | 45 | **88.0** | 36.1 | |
|
|
| LPIS-E | ✓ | ✓ | ✓ | | 183.1 | 46 | 87.6 | 30.3 | |
|
|
| LPIS-F | | | ✓ | | 0.9 | 61 | 85.3 | 23.8 | |
|
|
| LPIS-G | | | | ✓ | 1.8 | 77 | 84.5 | 18.1 | |
|
|
| LPIS-H | | | ✓ | ✓ | 2.8 | 61 | 84.9 | 23.8 | |
|
|
| LPIS-I | | ✓ | ✓ | ✓ | 97.5 | 49 | 87.2 | **39.2** | |
|
|
| LPIS-J | ✓ | ✓ | ✓ | ✓ | 186.9 | 53 | **88.0** | 35.4 | |
|
|
| LPIS-K | | ✓ | | | 89.2 | 14 | 84.5 | 15.1 | |
|
|
|
|
|
<hr> |
|
|
|
|
|
|
|
|
|
|
|
## 🔎 Filter dataset with the FLAIR-HUB Dataset Browser |
|
|
|
|
|
A small desktop GUI to browse and download subsets |
|
|
of the **IGNF/FLAIR-HUB** dataset from Hugging Face with filters for: Domain, Year, Modality or Data type. |
|
|
|
|
|
Requirements: |
|
|
|
|
|
- Python **3.9+** |
|
|
- Tkinter (usually included; on Linux you may need: sudo apt-get install python3-tk) |
|
|
- Python packages: pip install `huggingface_hub` |
|
|
|
|
|
Run: |
|
|
1. Download the file `flair-hub-HF-dl.py` from the *Files* section of this dataset. |
|
|
2. In a terminal: ```pip install huggingface_hub``` |
|
|
3. Launch: ```python flair-hub-HF-dl.py``` |
|
|
|
|
|
|
|
|
<hr> |
|
|
|
|
|
|
|
|
## ✨ MAESTRO basecode |
|
|
|
|
|
This dataset is extensively used by the [MAESTRO model](https://huggingface.co/papers/2508.10894) for masked autoencoding on multimodal Earth observation data. You can find the MAESTRO model's code on its [GitHub repository](https://github.com/ignf/maestro). |
|
|
|
|
|
A minimal example for using FLAIR-HUB with the MAESTRO framework: |
|
|
```bash |
|
|
poetry run python main.py \ |
|
|
model.model=mae \ |
|
|
model.model_size=medium \ |
|
|
run.exp_name=mae-m_flair \ |
|
|
run.exp_dir=/path/to/experiments/dir \ |
|
|
datasets.root_dir=/path/to/dataset/dir \ |
|
|
datasets.flair.rel_dir=FLAIR-HUB \ |
|
|
datasets.filter_pretrain=[flair] \ |
|
|
datasets.filter_finetune=[flair] |
|
|
``` |
|
|
<hr> |
|
|
|
|
|
## 📚 How to Cite |
|
|
|
|
|
|
|
|
``` |
|
|
Anatol Garioud, Sébastien Giordano, Nicolas David, Nicolas Gonthier. |
|
|
FLAIR-HUB: semantic segmentation and domain adaptation dataset. (2025). |
|
|
DOI: https://doi.org/10.48550/arXiv.2506.07080 |
|
|
``` |
|
|
|
|
|
```bibtex |
|
|
@article{ign2025flairhub, |
|
|
doi = {10.48550/arXiv.2506.07080}, |
|
|
url = {https://arxiv.org/abs/2506.07080}, |
|
|
author = {Garioud, Anatol and Giordano, Sébastien and David, Nicolas and Gonthier, Nicolas}, |
|
|
title = {FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping}, |
|
|
publisher = {arXiv}, |
|
|
year = {2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
|
|
|
## ⚙️ Acknowledgement |
|
|
|
|
|
Experiments have been conducted using HPC/AI resources provided by GENCI-IDRIS (Grant 2024-A0161013803, 2024-AD011014286R2 and 2025-A0181013803). |