next-ocr / README.md
Lamapi's picture
Update README.md
96c13eb verified
---
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_vl
- trl
- sft
- chemistry
- code
- climate
- art
- biology
- finance
- legal
- music
- medical
- agent
license: apache-2.0
language:
- en
- ab
- aa
- ae
- af
- ak
- am
- an
- ar
- as
- av
- ay
- az
- ba
- be
- bg
- bh
- bi
- bm
- bn
- bo
- br
- bs
- ca
- ce
- ch
- co
- cr
- cs
- cu
- cv
- cy
- da
- de
- dv
- dz
- ee
- el
- eo
- es
- et
- eu
- fa
- ff
- fi
- fj
- fo
- fr
- fy
- ga
- gd
- gl
- gn
- gv
- ha
- he
- hi
- ho
- gu
- hr
- ht
- hu
- hz
- hy
- id
- ia
- ig
- ie
- ik
- ii
- is
- io
- iu
- it
- jv
- ja
- kg
- ka
- kj
- ki
- kl
- kk
- kn
- km
- kr
- ko
- ku
- ks
- kw
- kv
- la
- ky
- lg
- lb
- ln
- li
- lt
- lo
- lv
- lu
- mg
- mi
- mh
- ml
- mk
- mr
- mn
- mt
- ms
- na
- my
- nd
- nb
- ng
- nl
- ne
- 'no'
- nn
- nv
- nr
- oc
- oj
- om
- ny
- os
- or
- pa
- pi
- pl
- ps
- pt
- rm
- rn
- qu
- ro
- ru
- sn
- rw
- so
- sa
- sc
- sd
pipeline_tag: image-text-to-text
library_name: transformers
---
<img src='bannerocr.png'>
# 🖼️ Next OCR 8B
### *Compact OCR AI — Accurate, Fast, Multilingual, Math-Optimized*
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Language: Multilingual](https://img.shields.io/badge/Language-Multilingual-red.svg)]()
[![HuggingFace](https://img.shields.io/badge/🤗-Lamapi/Next--OCR--orange.svg)](https://huggingface.co/Lamapi/next-ocr)
---
## 📖 Overview
**Next OCR 8B** is an **8-billion parameter model** optimized for **optical character recognition (OCR) tasks** with **mathematical and tabular content understanding**.
Supports **multilingual OCR** (Turkish, English, German, Spanish, French, Chinese, Japanese, Korean, Russian...) with high accuracy, including structured documents like tables, forms, and formulas.
---
## ⚡ Highlights
* 🖼️ Accurate text extraction, including math and tables
* 🌍 Multilingual support (30+ languages)
* ⚡ Lightweight and efficient
* 💬 Instruction-tuned for document understanding and analysis
---
## 📊 Benchmark & Comparison
![image](https://cdn-uploads.huggingface.co/production/uploads/67d46bc5fe6ad6f6511d6f44/wLtEbJ9U3KCJe4OCxvAF7.png)
---
| Model | OCR-Bench Accuracy (%) | Multilingual Accuracy (%) | Layout / Table Understanding (%) |
| ------------------------------- | ------------------------ | ------------------------- | -------------------------------- |
| **Next OCR** | **99.0** | **96.8** | **95.3** |
| PaddleOCR | 95.2 | 93.9 | 95.3 |
| Deepseek OCR | 90.6 | 87.4 | 86.1 |
| Tesseract | 92.0 | 88.4 | 72.0 |
| EasyOCR | 90.4 | 84.7 | 78.9 |
| Google Cloud Vision / DocAI | 98.7 | 95.5 | 93.6 |
| Amazon Textract | 94.7 | 86.2 | 86.1 |
| Azure Document Intelligence | 95.1 | 93.6 | 91.4 |
---
| Model | Handwriting (%) | Scene Text (%) | Complex Tables (%) |
| --------------------------- | --------------- | -------------- | ------------------ |
| **Next OCR** | 92 | 96 | 91 |
| PaddleOCR | 88 | 92 | 90 |
| Deepseek OCR | 80 | 85 | 83 |
| Tesseract | 75 | 88 | 70 |
| EasyOCR | 78 | 86 | 75 |
| Google Cloud Vision / DocAI | 90 | 95 | 92 |
| Amazon Textract | 85 | 90 | 88 |
| Azure Document Intelligence | 87 | 91 | 89 |
---
## 🚀 Installation & Usage
```python
from transformers import AutoTokenizer, AutoModelForVision2Seq
import torch
model_id = "Lamapi/next-ocr"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16)
img = Image.open("image.jpg")
# ATTENTION: The content list must include both an image and text.
messages = [
{"role": "system", "content": "You are Next-OCR, an helpful AI assistant trained by Lamapi."},
{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": "Read the text in this image and summarize it."}
]
}
]
# Apply the chat template correctly
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=prompt, images=[img], return_tensors="pt").to(model.device)
with torch.no_grad():
generated = model.generate(**inputs, max_new_tokens=256)
print(processor.decode(generated[0], skip_special_tokens=True))
```
---
## 🧩 Key Features
| Feature | Description |
| -------------------------- | --------------------------------------------------------------- |
| 🖼️ High-Accuracy OCR | Extracts text from images, documents, and screenshots reliably. |
| 🇹🇷 Multilingual Support | Works with 30+ languages including Turkish. |
| ⚡ Lightweight & Efficient | Optimized for resource-constrained environments. |
| 📄 Layout & Math Awareness | Handles tables, forms, and mathematical formulas. |
| 🏢 Reliable Outputs | Suitable for enterprise document workflows. |
---
## 📐 Model Specifications
| Specification | Details |
| ----------------- | --------------------------------------------------------- |
| **Base Model** | Qwen 3 |
| **Parameters** | 8 Billion |
| **Architecture** | Vision + Transformer (OCR LLM) |
| **Modalities** | Image-to-text |
| **Fine-Tuning** | OCR datasets with multilingual and math/tabular content |
| **Optimizations** | Quantization-ready, FP16 support |
| **Primary Focus** | Text extraction, document understanding, mathematical OCR |
---
## 🎯 Ideal Use Cases
* Document digitization
* Invoice & receipt processing
* Multilingual OCR pipelines
* Tables, forms, and formulas extraction
* Enterprise document management
---
## 📄 License
MIT License — free for commercial & non-commercial use.
---
## 📞 Contact & Support
* 📧 Email: [[email protected]](mailto:[email protected])
* 🤗 HuggingFace: [Lamapi](https://huggingface.co/Lamapi)
---
> **Next OCR** — Compact *OCR + math-capable* AI, blending **accuracy**, **speed**, and **multilingual document intelligence**.
[![Follow on HuggingFace](https://img.shields.io/badge/Follow-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/Lamapi)