Telecom Time-Series QA Model
This model is a fine-tuned FullModel architecture combining:
- Base LLM with LoRA (rank=16)
- Time-Series Encoder: TOTO (Datadog/Toto-Open-Base-1.0)
- Alignment Layer: Projects TS embeddings to LLM space
Trained on TelecomTS dataset for 7 QA tasks:
- root_cause
- anomaly_detection
- anomaly_bounds
- zone
- activity
- motion
- cong
Usage
# Load model components
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_path = "Andreas99/Tele-Cold-Start-Qwen3-4b"
state_dict = torch.load(f"{model_path}/pytorch_model.bin")
# Initialize FullModel with your architecture and load state_dict
Training Details
- Training: DeepSpeed ZeRO-3
- Method: SFT with LoRA fine-tuning
- Downloads last month
- 524
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support