Telecom Time-Series QA Model

This model is a fine-tuned FullModel architecture combining:

  • Base LLM with LoRA (rank=16)
  • Time-Series Encoder: TOTO (Datadog/Toto-Open-Base-1.0)
  • Alignment Layer: Projects TS embeddings to LLM space

Trained on TelecomTS dataset for 7 QA tasks:

  • root_cause
  • anomaly_detection
  • anomaly_bounds
  • zone
  • activity
  • motion
  • cong

Usage

# Load model components
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_path = "Andreas99/Tele-Cold-Start-Qwen3-4b"
state_dict = torch.load(f"{model_path}/pytorch_model.bin")
# Initialize FullModel with your architecture and load state_dict

Training Details

  • Training: DeepSpeed ZeRO-3
  • Method: SFT with LoRA fine-tuning
Downloads last month
524
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support