nielsr HF Staff commited on
Commit
5d70e22
·
verified ·
1 Parent(s): 0b7ed57

Enhance model card with metadata, links, and usage examples

Browse files

This PR significantly enhances the model card by adding:
- The `pipeline_tag: image-to-3d` to improve discoverability on the Hub.
- Direct links to the paper, project page, and GitHub repository.
- Comprehensive usage examples for installation, pretrained weights, and inference, extracted directly from the GitHub README.

Please review and merge if everything looks good!

Files changed (1) hide show
  1. README.md +94 -3
README.md CHANGED
@@ -1,3 +1,94 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-to-3d
4
+ ---
5
+
6
+ # Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy
7
+
8
+ This repository contains the `Gen-3Diffusion` model, which achieves realistic image-to-3D generation by leveraging a pre-trained 2D diffusion model and a 3D diffusion model, as presented in the paper:
9
+ [**Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy**](https://huggingface.co/papers/2412.06698)
10
+
11
+ Project Page: [https://yuxuan-xue.com/gen-3diffusion](https://yuxuan-xue.com/gen-3diffusion)
12
+ Code: [https://github.com/YuxuanSnow/Gen3Diffusion](https://github.com/YuxuanSnow/Gen3Diffusion)
13
+
14
+ ![](https://github.com/YuxuanSnow/Gen3Diffusion/blob/main/assets/teaser_video.gif)
15
+
16
+ ## Key Insight :raised_hands:
17
+ - 2D foundation models are powerful but output lacks 3D consistency!
18
+ - 3D generative models can reconstruct 3D representation but is poor in generalization!
19
+ - How to combine 2D foundation models with 3D generative models?:
20
+ - they are both diffusion-based generative models => **Can be synchronized at each diffusion step**
21
+ - 2D foundation model helps 3D generation => **provides strong prior informations about 3D shape**
22
+ - 3D representation guides 2D diffusion sampling => **use rendered output from 3D reconstruction for reverse sampling, where 3D consistency is guaranteed**
23
+
24
+ ## Install
25
+ Same Conda environment to Human-3Diffusion. Please skip if you already installed it.
26
+ ```bash
27
+ # Conda environment
28
+ conda create -n gen3diffusion python=3.10
29
+ conda activate gen3diffusion
30
+ pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
31
+ pip install xformers==0.0.22.post4 --index-url https://download.pytorch.org/whl/cu121
32
+
33
+ # Gaussian Opacity Fields
34
+ git clone https://github.com/YuxuanSnow/gaussian-opacity-fields.git
35
+ cd gaussian-opacity-fields && pip install submodules/diff-gaussian-rasterization
36
+ pip install submodules/simple-knn/ && cd ..
37
+ export CPATH=/usr/local/cuda-12.1/targets/x86_64-linux/include:$CPATH
38
+
39
+ # Dependencies
40
+ pip install -r requirements.txt
41
+
42
+ # TSDF Fusion (Mesh extraction) Dependencies
43
+ pip install --user numpy opencv-python scikit-image numba
44
+ pip install --user pycuda
45
+ pip install scipy==1.11
46
+ ```
47
+
48
+ ## Pretrained Weights
49
+ Our pretrained weight can be downloaded from huggingface.
50
+ ```bash
51
+ mkdir checkpoints_obj && cd checkpoints_obj
52
+ wget https://huggingface.co/yuxuanx/gen3diffusion/resolve/main/model.safetensors
53
+ wget https://huggingface.co/yuxuanx/gen3diffusion/resolve/main/model_1.safetensors
54
+ wget https://huggingface.co/yuxuanx/gen3diffusion/resolve/main/pifuhd.pt
55
+ cd ..
56
+ ```
57
+ The avatar reconstruction module is same to Human-3Diffusion. Please skip if you already installed Human-3Diffusion.
58
+ ```bash
59
+ mkdir checkpoints_avatar && cd checkpoints_avatar
60
+ wget https://huggingface.co/yuxuanx/human3diffusion/resolve/main/model.safetensors
61
+ wget https://huggingface.co/yuxuanx/human3diffusion/resolve/main/model_1.safetensors
62
+ wget https://huggingface.co/yuxuanx/human3diffusion/resolve/main/pifuhd.pt
63
+ cd ..
64
+ ```
65
+
66
+ ## Inference
67
+ ```bash
68
+ # given one image of object, generate 3D-GS object
69
+ # subject should be centered in a square image, please crop properly
70
+ # recenter plays a huge role in object reconstruction. Please adjust the recentering if the reconstruction doesn't work well
71
+ python infer.py --test_imgs test_imgs_obj --output output_obj --checkpoints checkpoints_obj
72
+
73
+ # given generated 3D-GS, perform TSDF mesh extraction
74
+ python infer_mesh.py --test_imgs test_imgs_obj --output output_obj --checkpoints checkpoints_obj --mesh_quality high
75
+ ```
76
+
77
+ ```bash
78
+ # given one image of human, generate 3D-GS avatar
79
+ # subject should be centered in a square image, please crop properly
80
+ python infer.py --test_imgs test_imgs_avatar --output output_avatar --checkpoints checkpoints_avatar
81
+
82
+ # given generated 3D-GS, perform TSDF mesh extraction
83
+ python infer_mesh.py --test_imgs test_imgs_avatar --output output_avatar --checkpoints checkpoints_avatar --mesh_quality high
84
+ ```
85
+
86
+ ## Citation :writing_hand:
87
+ ```bibtex
88
+ @inproceedings{xue2024gen3diffusion,
89
+ title = {{Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy }},
90
+ author = {Xue, Yuxuan and Xie, Xianghui and Marin, Riccardo and Pons-Moll, Gerard.},\
91
+ journal = {Arxiv},\
92
+ year = {2024},\
93
+ }
94
+ ```