Spaces:
Sleeping
Sleeping
Commit
Β·
8a7566d
1
Parent(s):
46e5a8a
first commit
Browse files- Dockerfile +42 -0
- __pycache__/app.cpython-311.pyc +0 -0
- app.py +243 -0
- requirements.txt +49 -0
- segformer_b1.onnx +3 -0
- yolov8n.pt +3 -0
Dockerfile
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================
|
| 2 |
+
# π SMART CCTV β Dockerfile
|
| 3 |
+
# ==============================================
|
| 4 |
+
|
| 5 |
+
# ---- Base Image ----
|
| 6 |
+
# (Use NVIDIAβs PyTorch image for GPU support; change to "python:3.11-slim" if CPU only)
|
| 7 |
+
FROM pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime
|
| 8 |
+
|
| 9 |
+
# ---- System Setup ----
|
| 10 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
| 11 |
+
|
| 12 |
+
# Install system-level deps (for OpenCV, ffmpeg, etc.)
|
| 13 |
+
RUN apt-get update && apt-get install -y \
|
| 14 |
+
ffmpeg \
|
| 15 |
+
libsm6 \
|
| 16 |
+
libxext6 \
|
| 17 |
+
libgl1 \
|
| 18 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 19 |
+
|
| 20 |
+
# ---- Working Directory ----
|
| 21 |
+
WORKDIR /app
|
| 22 |
+
|
| 23 |
+
# ---- Copy Requirements ----
|
| 24 |
+
COPY requirements.txt .
|
| 25 |
+
|
| 26 |
+
# ---- Install Python Dependencies ----
|
| 27 |
+
RUN pip install --upgrade pip \
|
| 28 |
+
&& pip install --no-cache-dir -r requirements.txt
|
| 29 |
+
|
| 30 |
+
# ---- Copy App Code ----
|
| 31 |
+
COPY . .
|
| 32 |
+
|
| 33 |
+
# ---- Environment Variables ----
|
| 34 |
+
ENV TRANSFORMERS_CACHE=/tmp/hf_cache
|
| 35 |
+
RUN mkdir -p /tmp/hf_cache
|
| 36 |
+
|
| 37 |
+
# ---- Expose Port ----
|
| 38 |
+
EXPOSE 7860
|
| 39 |
+
|
| 40 |
+
# ---- Command to Run the App ----
|
| 41 |
+
# (You can change --host 0.0.0.0 --port 7860 to whatever you like)
|
| 42 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--timeout-keep-alive", "120"]
|
__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (11.8 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
import shutil
|
| 7 |
+
from ultralytics import YOLO
|
| 8 |
+
# --- UPDATED IMPORTS for SegFormer PyTorch model ---
|
| 9 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
| 10 |
+
from transformers import VideoMAEForVideoClassification, VideoMAEFeatureExtractor
|
| 11 |
+
from fastapi import FastAPI, UploadFile, File
|
| 12 |
+
from fastapi.responses import FileResponse
|
| 13 |
+
from starlette.background import BackgroundTask
|
| 14 |
+
|
| 15 |
+
# --- Configuration ---
|
| 16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
print(f"βοΈ Using device: {DEVICE}")
|
| 18 |
+
|
| 19 |
+
# Set a writable directory for model caches on Hugging Face Spaces
|
| 20 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/hf_cache'
|
| 21 |
+
os.makedirs('/tmp/hf_cache', exist_ok=True)
|
| 22 |
+
|
| 23 |
+
# --- 1οΈβ£ Load Models ---
|
| 24 |
+
|
| 25 |
+
# Semantic Segmentation (SegFormer PyTorch) <-- CHANGE HERE
|
| 26 |
+
SEG_MODEL_NAME = "nvidia/segformer-b1-finetuned-ade-512-512"
|
| 27 |
+
seg_processor = SegformerImageProcessor.from_pretrained(SEG_MODEL_NAME)
|
| 28 |
+
seg_model = SegformerForSemanticSegmentation.from_pretrained(
|
| 29 |
+
SEG_MODEL_NAME
|
| 30 |
+
).to(DEVICE).eval()
|
| 31 |
+
|
| 32 |
+
# Object Detection + Tracking (YOLOv8 + ByteTrack)
|
| 33 |
+
detector = YOLO("yolov8n.pt")
|
| 34 |
+
|
| 35 |
+
# Behavior Recognition (VideoMAE)
|
| 36 |
+
act_processor = VideoMAEFeatureExtractor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
| 37 |
+
act_model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to(DEVICE).eval()
|
| 38 |
+
ACTION_CLIP_LEN = 16
|
| 39 |
+
|
| 40 |
+
# This dictionary stores the last predicted label for each ID
|
| 41 |
+
id_last_labels = {}
|
| 42 |
+
|
| 43 |
+
# -------------------------------
|
| 44 |
+
# 2οΈβ£ FastAPI Setup
|
| 45 |
+
# -------------------------------
|
| 46 |
+
app = FastAPI(title="Smart CCTV Video Processor")
|
| 47 |
+
|
| 48 |
+
# -------------------------------
|
| 49 |
+
# 3οΈβ£ Utility Functions
|
| 50 |
+
# -------------------------------
|
| 51 |
+
|
| 52 |
+
def cleanup_task(dir_path):
|
| 53 |
+
"""Utility to create a BackgroundTask for deleting the temp directory."""
|
| 54 |
+
# Ignore errors (like PermissionError on Windows) during cleanup
|
| 55 |
+
return BackgroundTask(shutil.rmtree, dir_path, ignore_errors=True)
|
| 56 |
+
|
| 57 |
+
# --- REMOVED: preprocess_segformer() and run_segformer_onnx() ---
|
| 58 |
+
# They are replaced by the functions below using the HuggingFace SegFormer pipeline.
|
| 59 |
+
|
| 60 |
+
def run_segformer_pytorch(frame_rgb: np.ndarray, original_shape) -> np.ndarray:
|
| 61 |
+
"""
|
| 62 |
+
Runs PyTorch SegFormer inference and returns the human mask.
|
| 63 |
+
This replaces the ONNX code.
|
| 64 |
+
"""
|
| 65 |
+
# 1. Preprocess
|
| 66 |
+
# The processor handles resizing, normalization, and tensor conversion automatically
|
| 67 |
+
inputs = seg_processor(images=frame_rgb, return_tensors="pt").to(DEVICE)
|
| 68 |
+
|
| 69 |
+
# 2. Inference
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
seg_logits = seg_model(**inputs).logits
|
| 72 |
+
|
| 73 |
+
# 3. Post-process
|
| 74 |
+
# Resize logits to original image size
|
| 75 |
+
seg_logits = torch.nn.functional.interpolate(
|
| 76 |
+
seg_logits,
|
| 77 |
+
size=(original_shape[0], original_shape[1]), # H, W
|
| 78 |
+
mode='bilinear',
|
| 79 |
+
align_corners=False
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
pred_mask = torch.argmax(seg_logits, dim=1).squeeze().cpu().numpy()
|
| 83 |
+
|
| 84 |
+
# ADE20K class 12 = person
|
| 85 |
+
human_mask = (pred_mask == 12).astype(np.uint8)
|
| 86 |
+
|
| 87 |
+
return human_mask
|
| 88 |
+
|
| 89 |
+
def run_action_recognition(clip_buffer: list) -> str:
|
| 90 |
+
"""Runs VideoMAE on a list of RGB frames (clip_buffer)."""
|
| 91 |
+
# Resize all frames to 224x224 (VideoMAE input requirement)
|
| 92 |
+
clip_resized = [cv2.resize(f, (224, 224), interpolation=cv2.INTER_LINEAR) for f in clip_buffer]
|
| 93 |
+
|
| 94 |
+
# Convert to tensor input for VideoMAE
|
| 95 |
+
inputs = act_processor(clip_resized, return_tensors="pt").to(DEVICE)
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
outputs = act_model(**inputs)
|
| 99 |
+
pred = outputs.logits.argmax(-1).item()
|
| 100 |
+
label = act_model.config.id2label.get(pred, "Unknown Action")
|
| 101 |
+
return label
|
| 102 |
+
|
| 103 |
+
# -------------------------------
|
| 104 |
+
# 4οΈβ£ Main API Endpoint
|
| 105 |
+
# -------------------------------
|
| 106 |
+
|
| 107 |
+
@app.get("/")
|
| 108 |
+
async def root():
|
| 109 |
+
return {"message": "Smart CCTV Backend: Upload a video to /process-video/"}
|
| 110 |
+
|
| 111 |
+
@app.post("/process-video/")
|
| 112 |
+
async def process_video_endpoint(file: UploadFile = File(...)):
|
| 113 |
+
global id_last_labels
|
| 114 |
+
|
| 115 |
+
if not file.content_type.startswith('video/'):
|
| 116 |
+
await file.close()
|
| 117 |
+
return {"error": "Invalid file type. Only video files are supported."}, 400
|
| 118 |
+
|
| 119 |
+
# MANUAL TEMP DIR SETUP: Fixes PermissionError by controlling cleanup
|
| 120 |
+
tmpdir = tempfile.mkdtemp()
|
| 121 |
+
input_path = os.path.join(tmpdir, file.filename)
|
| 122 |
+
output_path = os.path.join(tmpdir, "smart_cctv_output.mp4")
|
| 123 |
+
|
| 124 |
+
cap, out = None, None
|
| 125 |
+
try:
|
| 126 |
+
# Save the uploaded file to the temporary directory
|
| 127 |
+
with open(input_path, "wb") as buffer:
|
| 128 |
+
# IMPORTANT: Stream the file content to the buffer
|
| 129 |
+
while content := await file.read(1024 * 1024): # Read in chunks (1MB)
|
| 130 |
+
buffer.write(content)
|
| 131 |
+
|
| 132 |
+
await file.close()
|
| 133 |
+
|
| 134 |
+
cap = cv2.VideoCapture(input_path)
|
| 135 |
+
|
| 136 |
+
if not cap.isOpened():
|
| 137 |
+
return {"error": "Could not open video file."}, 500
|
| 138 |
+
|
| 139 |
+
# Video properties
|
| 140 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 141 |
+
width, height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 142 |
+
|
| 143 |
+
if width <= 0 or height <= 0:
|
| 144 |
+
return {"error": "Invalid video dimensions."}, 500
|
| 145 |
+
|
| 146 |
+
# Output Video Setup
|
| 147 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 148 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 149 |
+
|
| 150 |
+
# Buffers for Per-ID Action Clips
|
| 151 |
+
id_clip_buffers = {}
|
| 152 |
+
id_last_labels.clear()
|
| 153 |
+
action_clip_len = ACTION_CLIP_LEN
|
| 154 |
+
|
| 155 |
+
# Process Each Frame
|
| 156 |
+
frame_count = 0
|
| 157 |
+
while cap.isOpened():
|
| 158 |
+
ret, frame = cap.read()
|
| 159 |
+
if not ret:
|
| 160 |
+
break
|
| 161 |
+
|
| 162 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 163 |
+
original_shape = frame.shape
|
| 164 |
+
|
| 165 |
+
# --- Segmentation (PyTorch) --- <-- CHANGE HERE
|
| 166 |
+
human_mask = run_segformer_pytorch(frame_rgb, original_shape)
|
| 167 |
+
|
| 168 |
+
# --- Detection + Tracking (YOLO + ByteTrack) ---
|
| 169 |
+
results = detector.track(frame, persist=True, tracker="bytetrack.yaml", verbose=False)
|
| 170 |
+
boxes = results[0].boxes.xyxy.cpu().numpy() if results[0].boxes is not None else []
|
| 171 |
+
ids = results[0].boxes.id.cpu().numpy() if results[0].boxes.id is not None else []
|
| 172 |
+
|
| 173 |
+
# --- For each tracked person ---
|
| 174 |
+
for box, track_id in zip(boxes, ids):
|
| 175 |
+
x1, y1, x2, y2 = map(int, box)
|
| 176 |
+
track_id = int(track_id)
|
| 177 |
+
|
| 178 |
+
# Crop with a slight buffer
|
| 179 |
+
buffer_px = 5
|
| 180 |
+
y1 = max(0, y1 - buffer_px)
|
| 181 |
+
y2 = min(height, y2 + buffer_px)
|
| 182 |
+
x1 = max(0, x1 - buffer_px)
|
| 183 |
+
x2 = min(width, x2 + buffer_px)
|
| 184 |
+
|
| 185 |
+
person_crop = frame_rgb[y1:y2, x1:x2]
|
| 186 |
+
|
| 187 |
+
if person_crop.size == 0:
|
| 188 |
+
continue
|
| 189 |
+
|
| 190 |
+
# Maintain a clip buffer per person ID
|
| 191 |
+
id_clip_buffers.setdefault(track_id, [])
|
| 192 |
+
id_clip_buffers[track_id].append(person_crop)
|
| 193 |
+
|
| 194 |
+
# Keep only latest N frames
|
| 195 |
+
if len(id_clip_buffers[track_id]) > action_clip_len:
|
| 196 |
+
id_clip_buffers[track_id] = id_clip_buffers[track_id][-action_clip_len:]
|
| 197 |
+
|
| 198 |
+
# --- Action Recognition when clip ready ---
|
| 199 |
+
label = id_last_labels.get(track_id, "Analyzing...")
|
| 200 |
+
|
| 201 |
+
if len(id_clip_buffers[track_id]) == action_clip_len:
|
| 202 |
+
# Run inference every N frames to save time/resources
|
| 203 |
+
if frame_count % (action_clip_len // 2) == 0:
|
| 204 |
+
label = run_action_recognition(id_clip_buffers[track_id])
|
| 205 |
+
id_last_labels[track_id] = label
|
| 206 |
+
|
| 207 |
+
# --- Draw box + label ---
|
| 208 |
+
color = (0, 255, 0)
|
| 209 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
| 210 |
+
cv2.putText(frame, f"ID {track_id}: {label}", (x1, y1 - 10),
|
| 211 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
| 212 |
+
|
| 213 |
+
# --- Segmentation Overlay ---
|
| 214 |
+
# NOTE: We no longer need to resize the mask here as the PyTorch function handles interpolation
|
| 215 |
+
mask_colored = cv2.applyColorMap((human_mask * 255).astype(np.uint8), cv2.COLORMAP_JET)
|
| 216 |
+
|
| 217 |
+
# Blend safely
|
| 218 |
+
overlay = cv2.addWeighted(frame, 0.7, mask_colored, 0.3, 0)
|
| 219 |
+
|
| 220 |
+
out.write(overlay)
|
| 221 |
+
frame_count += 1
|
| 222 |
+
|
| 223 |
+
# --- Cleanup (Before Return) ---
|
| 224 |
+
cap.release()
|
| 225 |
+
out.release()
|
| 226 |
+
|
| 227 |
+
# --- Return the processed video file ---
|
| 228 |
+
return FileResponse(
|
| 229 |
+
path=output_path,
|
| 230 |
+
media_type='video/mp4',
|
| 231 |
+
filename=f"processed_{os.path.basename(input_path)}",
|
| 232 |
+
# Use background task to delete the temporary folder AFTER the response is sent
|
| 233 |
+
background=cleanup_task(tmpdir)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
except Exception as e:
|
| 237 |
+
# Ensure cleanup on failure
|
| 238 |
+
if cap: cap.release()
|
| 239 |
+
if out: out.release()
|
| 240 |
+
# Clean up the manually created temp directory
|
| 241 |
+
shutil.rmtree(tmpdir, ignore_errors=True)
|
| 242 |
+
# Re-raise the exception for FastAPI/Uvicorn to handle
|
| 243 |
+
raise e
|
requirements.txt
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==========================
|
| 2 |
+
# π§ CORE DEEP LEARNING
|
| 3 |
+
# ==========================
|
| 4 |
+
torch==2.5.1+cu121
|
| 5 |
+
torchvision==0.20.1+cu121
|
| 6 |
+
torchaudio==2.5.1+cu121
|
| 7 |
+
|
| 8 |
+
# ==========================
|
| 9 |
+
# π€ TRANSFORMERS + HF HUB
|
| 10 |
+
# ==========================
|
| 11 |
+
transformers==4.48.3
|
| 12 |
+
huggingface-hub==0.34.4
|
| 13 |
+
timm==0.8.13.dev0
|
| 14 |
+
safetensors==0.6.2
|
| 15 |
+
|
| 16 |
+
# ==========================
|
| 17 |
+
# π§© YOLOv8 + BYTETrack
|
| 18 |
+
# ==========================
|
| 19 |
+
ultralytics==8.3.183
|
| 20 |
+
lap==0.5.12
|
| 21 |
+
lapx==0.5.11.post1
|
| 22 |
+
shapely==2.1.2
|
| 23 |
+
|
| 24 |
+
# ==========================
|
| 25 |
+
# π₯ VISION + UTILITIES
|
| 26 |
+
# ==========================
|
| 27 |
+
opencv-python==4.12.0.88
|
| 28 |
+
numpy==2.1.2
|
| 29 |
+
tqdm==4.67.1
|
| 30 |
+
pillow==11.0.0
|
| 31 |
+
scipy==1.16.1
|
| 32 |
+
imageio==2.37.0
|
| 33 |
+
|
| 34 |
+
# ==========================
|
| 35 |
+
# π FASTAPI BACKEND
|
| 36 |
+
# ==========================
|
| 37 |
+
fastapi==0.116.1
|
| 38 |
+
uvicorn==0.35.0
|
| 39 |
+
starlette==0.47.2
|
| 40 |
+
python-multipart==0.0.20
|
| 41 |
+
pydantic==2.11.7
|
| 42 |
+
pydantic-core==2.33.2
|
| 43 |
+
typing-extensions==4.14.1
|
| 44 |
+
|
| 45 |
+
# ==========================
|
| 46 |
+
# βοΈ MISC (Safe to include)
|
| 47 |
+
# ==========================
|
| 48 |
+
requests==2.32.5
|
| 49 |
+
orjson==3.11.1
|
segformer_b1.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5df6ae360ad1ab7f3085f3a510522f25ae1b6c4a2f4479a40852cb5be64305b4
|
| 3 |
+
size 55144053
|
yolov8n.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f59b3d833e2ff32e194b5bb8e08d211dc7c5bdf144b90d2c8412c47ccfc83b36
|
| 3 |
+
size 6549796
|