Spaces:
Runtime error
Runtime error
Commit
·
82adb40
0
Parent(s):
Duplicate from hadisalman/photoguard
Browse filesCo-authored-by: Hadi Salman <[email protected]>
- .gitattributes +36 -0
- README.md +14 -0
- app.py +162 -0
- images/elon_1.jpg +3 -0
- images/elon_2.jpg +3 -0
- images/hadi_and_trevor.jpg +3 -0
- images/trevor_2.jpg +3 -0
- images/trevor_3.jpg +3 -0
- images/trevor_4.jpg +3 -0
- requirements.txt +6 -0
- utils.py +65 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*jpg filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Photoguard
|
| 3 |
+
emoji: 🛡
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.19.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
duplicated_from: hadisalman/photoguard
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
import requests
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import requests
|
| 5 |
+
import torch
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
from PIL import Image, ImageOps
|
| 8 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 9 |
+
from torchvision.transforms import ToPILImage
|
| 10 |
+
from utils import preprocess, prepare_mask_and_masked_image, recover_image, resize_and_crop
|
| 11 |
+
|
| 12 |
+
gr.close_all()
|
| 13 |
+
topil = ToPILImage()
|
| 14 |
+
|
| 15 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
| 16 |
+
"runwayml/stable-diffusion-inpainting",
|
| 17 |
+
revision="fp16",
|
| 18 |
+
torch_dtype=torch.float16,
|
| 19 |
+
safety_checker=None,
|
| 20 |
+
)
|
| 21 |
+
pipe_inpaint = pipe_inpaint.to("cuda")
|
| 22 |
+
|
| 23 |
+
## Good params for editing that we used all over the paper --> decent quality and speed
|
| 24 |
+
GUIDANCE_SCALE = 7.5
|
| 25 |
+
NUM_INFERENCE_STEPS = 100
|
| 26 |
+
DEFAULT_SEED = 1234
|
| 27 |
+
|
| 28 |
+
def pgd(X, targets, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
|
| 29 |
+
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
|
| 30 |
+
pbar = tqdm(range(iters))
|
| 31 |
+
for i in pbar:
|
| 32 |
+
actual_step_size = step_size - (step_size - step_size / 100) / iters * i
|
| 33 |
+
X_adv.requires_grad_(True)
|
| 34 |
+
|
| 35 |
+
loss = (model(X_adv).latent_dist.mean - targets).norm()
|
| 36 |
+
pbar.set_description(f"Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
|
| 37 |
+
|
| 38 |
+
grad, = torch.autograd.grad(loss, [X_adv])
|
| 39 |
+
|
| 40 |
+
X_adv = X_adv - grad.detach().sign() * actual_step_size
|
| 41 |
+
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
|
| 42 |
+
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
|
| 43 |
+
X_adv.grad = None
|
| 44 |
+
|
| 45 |
+
if mask is not None:
|
| 46 |
+
X_adv.data *= mask
|
| 47 |
+
|
| 48 |
+
return X_adv
|
| 49 |
+
|
| 50 |
+
def get_target():
|
| 51 |
+
target_url = 'https://www.rtings.com/images/test-materials/2015/204_Gray_Uniformity.png'
|
| 52 |
+
response = requests.get(target_url)
|
| 53 |
+
target_image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 54 |
+
target_image = target_image.resize((512, 512))
|
| 55 |
+
return target_image
|
| 56 |
+
|
| 57 |
+
def immunize_fn(init_image, mask_image):
|
| 58 |
+
with torch.autocast('cuda'):
|
| 59 |
+
mask, X = prepare_mask_and_masked_image(init_image, mask_image)
|
| 60 |
+
X = X.half().cuda()
|
| 61 |
+
mask = mask.half().cuda()
|
| 62 |
+
|
| 63 |
+
targets = pipe_inpaint.vae.encode(preprocess(get_target()).half().cuda()).latent_dist.mean
|
| 64 |
+
|
| 65 |
+
adv_X = pgd(X,
|
| 66 |
+
targets = targets,
|
| 67 |
+
model=pipe_inpaint.vae.encode,
|
| 68 |
+
criterion=torch.nn.MSELoss(),
|
| 69 |
+
clamp_min=-1,
|
| 70 |
+
clamp_max=1,
|
| 71 |
+
eps=0.12,
|
| 72 |
+
step_size=0.01,
|
| 73 |
+
iters=200,
|
| 74 |
+
mask=1-mask
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
|
| 78 |
+
|
| 79 |
+
adv_image = topil(adv_X[0]).convert("RGB")
|
| 80 |
+
adv_image = recover_image(adv_image, init_image, mask_image, background=True)
|
| 81 |
+
return adv_image
|
| 82 |
+
|
| 83 |
+
def run(image, prompt, seed, immunize=False):
|
| 84 |
+
if seed == '':
|
| 85 |
+
seed = DEFAULT_SEED
|
| 86 |
+
else:
|
| 87 |
+
seed = int(seed)
|
| 88 |
+
torch.manual_seed(seed)
|
| 89 |
+
|
| 90 |
+
init_image = Image.fromarray(image['image'])
|
| 91 |
+
init_image = resize_and_crop(init_image, (512,512))
|
| 92 |
+
mask_image = ImageOps.invert(Image.fromarray(image['mask']).convert('RGB'))
|
| 93 |
+
mask_image = resize_and_crop(mask_image, init_image.size)
|
| 94 |
+
|
| 95 |
+
if immunize:
|
| 96 |
+
immunized_image = immunize_fn(init_image, mask_image)
|
| 97 |
+
|
| 98 |
+
image_edited = pipe_inpaint(prompt=prompt,
|
| 99 |
+
image=init_image if not immunize else immunized_image,
|
| 100 |
+
mask_image=mask_image,
|
| 101 |
+
height = init_image.size[0],
|
| 102 |
+
width = init_image.size[1],
|
| 103 |
+
eta=1,
|
| 104 |
+
guidance_scale=GUIDANCE_SCALE,
|
| 105 |
+
num_inference_steps=NUM_INFERENCE_STEPS,
|
| 106 |
+
).images[0]
|
| 107 |
+
|
| 108 |
+
image_edited = recover_image(image_edited, init_image, mask_image)
|
| 109 |
+
|
| 110 |
+
if immunize:
|
| 111 |
+
return [(immunized_image, 'Immunized Image'), (image_edited, 'Edited After Immunization')]
|
| 112 |
+
else:
|
| 113 |
+
return [(image_edited, 'Edited Image')]
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
demo = gr.Interface(fn=run,
|
| 117 |
+
inputs=[
|
| 118 |
+
gr.ImageMask(label='Drawing tool to mask regions you want to keep, e.g. faces'),
|
| 119 |
+
gr.Textbox(label='Prompt', placeholder='A photo of a man in a wedding'),
|
| 120 |
+
gr.Textbox(label='Seed (Change to get different edits!)', placeholder=str(DEFAULT_SEED), visible=True),
|
| 121 |
+
gr.Checkbox(label='Immunize', value=False),
|
| 122 |
+
],
|
| 123 |
+
cache_examples=False,
|
| 124 |
+
outputs=[gr.Gallery(
|
| 125 |
+
label="Generated images",
|
| 126 |
+
show_label=False,
|
| 127 |
+
elem_id="gallery").style(grid=[1,2], height="auto")],
|
| 128 |
+
examples=[
|
| 129 |
+
['./images/hadi_and_trevor.jpg', 'man attending a wedding', '329357'],
|
| 130 |
+
['./images/trevor_2.jpg', 'two men in prison', '329357'],
|
| 131 |
+
['./images/elon_2.jpg', 'man in a metro station', '214213'],
|
| 132 |
+
],
|
| 133 |
+
examples_per_page=20,
|
| 134 |
+
allow_flagging='never',
|
| 135 |
+
title="Interactive Demo: Immunize your Photos Against AI-powered Malicious Manipulation",
|
| 136 |
+
description='''<u>Official</u> demo of our paper: <br>
|
| 137 |
+
**Raising the Cost of Malicious AI-Powered Image Editing** <br>
|
| 138 |
+
*[Hadi Salman](https://twitter.com/hadisalmanX)\*, [Alaa Khaddaj](https://twitter.com/Alaa_Khaddaj)\*, [Guillaume Leclerc](https://twitter.com/gpoleclerc)\*, [Andrew Ilyas](https://twitter.com/andrew_ilyas), [Aleksander Madry](https://twitter.com/aleks_madry)* <br>
|
| 139 |
+
MIT [Paper](https://arxiv.org/abs/2302.06588)
|
| 140 |
+
[Blog post](https://gradientscience.org/photoguard/)
|
| 141 |
+
[](https://github.com/MadryLab/photoguard)
|
| 142 |
+
<br />
|
| 143 |
+
Below you can test our (encoder attack) immunization method for making images resistant to manipulation by Stable Diffusion. This immunization process forces the model to perform unrealistic edits.
|
| 144 |
+
<br />
|
| 145 |
+
**This is a research project and is not production-ready. See Section 5 in our paper for discussion on its limitations.**
|
| 146 |
+
<details closed>
|
| 147 |
+
<summary>Click for demo steps:</summary>
|
| 148 |
+
|
| 149 |
+
+ Upload an image (or select from the below examples!)
|
| 150 |
+
+ Mask (using the drawing tool) the parts of the image you want to maintain unedited (e.g., faces of people)
|
| 151 |
+
+ Add a prompt to edit the image accordingly (see examples below)
|
| 152 |
+
+ Play with the seed and click submit until you get a realistic edit that you are happy with (or use default seeds below)
|
| 153 |
+
|
| 154 |
+
Now let's immunize your image and try again!
|
| 155 |
+
+ Click on the "immunize" button, then submit.
|
| 156 |
+
+ You will get the immunized image (which looks identical to the original one) and the edited image, which is now hopefully unrealistic!
|
| 157 |
+
</details>
|
| 158 |
+
''',
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# demo.launch()
|
| 162 |
+
demo.launch(server_name='0.0.0.0', share=False, server_port=7860, inline=False)
|
images/elon_1.jpg
ADDED
|
Git LFS Details
|
images/elon_2.jpg
ADDED
|
Git LFS Details
|
images/hadi_and_trevor.jpg
ADDED
|
Git LFS Details
|
images/trevor_2.jpg
ADDED
|
Git LFS Details
|
images/trevor_3.jpg
ADDED
|
Git LFS Details
|
images/trevor_4.jpg
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.10.2
|
| 2 |
+
transformers
|
| 3 |
+
scipy
|
| 4 |
+
accelerate
|
| 5 |
+
torchvision
|
| 6 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
utils.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image, ImageOps
|
| 5 |
+
from torchvision.transforms import ToPILImage, ToTensor
|
| 6 |
+
totensor = ToTensor()
|
| 7 |
+
topil = ToPILImage()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def resize_and_crop(img, size, crop_type="center"):
|
| 12 |
+
'''Resize and crop the image to the given size.'''
|
| 13 |
+
if crop_type == "top":
|
| 14 |
+
center = (0, 0)
|
| 15 |
+
elif crop_type == "center":
|
| 16 |
+
center = (0.5, 0.5)
|
| 17 |
+
else:
|
| 18 |
+
raise ValueError
|
| 19 |
+
|
| 20 |
+
resize = list(size)
|
| 21 |
+
if size[0] is None:
|
| 22 |
+
resize[0] = img.size[0]
|
| 23 |
+
if size[1] is None:
|
| 24 |
+
resize[1] = img.size[1]
|
| 25 |
+
return ImageOps.fit(img, resize, centering=center)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def recover_image(image, init_image, mask, background=False):
|
| 29 |
+
image = totensor(image)
|
| 30 |
+
mask = totensor(mask)[0]
|
| 31 |
+
init_image = totensor(init_image)
|
| 32 |
+
|
| 33 |
+
if background:
|
| 34 |
+
result = mask * init_image + (1 - mask) * image
|
| 35 |
+
else:
|
| 36 |
+
result = mask * image + (1 - mask) * init_image
|
| 37 |
+
return topil(result)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def preprocess(image):
|
| 41 |
+
w, h = image.size
|
| 42 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
| 43 |
+
image = image.resize((w, h), resample=Image.LANCZOS)
|
| 44 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 45 |
+
image = image[None].transpose(0, 3, 1, 2)
|
| 46 |
+
image = torch.from_numpy(image)
|
| 47 |
+
return 2.0 * image - 1.0
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def prepare_mask_and_masked_image(image, mask):
|
| 51 |
+
|
| 52 |
+
image = np.array(image.convert("RGB"))
|
| 53 |
+
image = image[None].transpose(0, 3, 1, 2)
|
| 54 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
| 55 |
+
|
| 56 |
+
mask = np.array(mask.convert("L"))
|
| 57 |
+
mask = mask.astype(np.float32) / 255.0
|
| 58 |
+
mask = mask[None, None]
|
| 59 |
+
mask[mask < 0.5] = 0
|
| 60 |
+
mask[mask >= 0.5] = 1
|
| 61 |
+
mask = torch.from_numpy(mask)
|
| 62 |
+
|
| 63 |
+
masked_image = image * (mask < 0.5)
|
| 64 |
+
|
| 65 |
+
return mask, masked_image
|