Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| from torch.nn import init | |
| import functools | |
| from torch.optim import lr_scheduler | |
| ############################################################################### | |
| # Helper Functions | |
| ############################################################################### | |
| def get_norm_layer(norm_type='instance'): | |
| if norm_type == 'batch': | |
| norm_layer = functools.partial(nn.BatchNorm2d, affine=True) | |
| elif norm_type == 'instance': | |
| norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) | |
| elif norm_type == 'none': | |
| norm_layer = None | |
| else: | |
| raise NotImplementedError('normalization layer [%s] is not found' % norm_type) | |
| return norm_layer | |
| def get_scheduler(optimizer, opt): | |
| if opt.lr_policy == 'lambda': | |
| def lambda_rule(epoch): | |
| lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) | |
| return lr_l | |
| scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) | |
| elif opt.lr_policy == 'step': | |
| scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) | |
| elif opt.lr_policy == 'plateau': | |
| scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) | |
| elif opt.lr_policy == 'cosine': | |
| scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0) | |
| else: | |
| return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) | |
| return scheduler | |
| def init_weights(net, init_type='normal', gain=0.02): | |
| def init_func(m): | |
| classname = m.__class__.__name__ | |
| if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): | |
| if init_type == 'normal': | |
| init.normal_(m.weight.data, 0.0, gain) | |
| elif init_type == 'xavier': | |
| init.xavier_normal_(m.weight.data, gain=gain) | |
| elif init_type == 'kaiming': | |
| init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') | |
| elif init_type == 'orthogonal': | |
| init.orthogonal_(m.weight.data, gain=gain) | |
| else: | |
| raise NotImplementedError('initialization method [%s] is not implemented' % init_type) | |
| if hasattr(m, 'bias') and m.bias is not None: | |
| init.constant_(m.bias.data, 0.0) | |
| elif classname.find('BatchNorm2d') != -1: | |
| init.normal_(m.weight.data, 1.0, gain) | |
| init.constant_(m.bias.data, 0.0) | |
| print('initialize network with %s' % init_type) | |
| net.apply(init_func) | |
| def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): | |
| if len(gpu_ids) > 0: | |
| assert(torch.cuda.is_available()) | |
| net.to(gpu_ids[0]) | |
| net = torch.nn.DataParallel(net, gpu_ids) | |
| init_weights(net, init_type, gain=init_gain) | |
| return net | |
| def calc_mean_std(feat, eps=1e-5): | |
| # eps is a small value added to the variance to avoid divide-by-zero. | |
| size = feat.size() | |
| assert (len(size) == 4) | |
| N, C = size[:2] | |
| feat_var = feat.view(N, C, -1).var(dim=2) + eps | |
| feat_std = feat_var.sqrt().view(N, C, 1, 1) | |
| feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) | |
| return feat_mean, feat_std | |
| def affine_transformation(X, alpha, beta): | |
| x = X.clone() | |
| mean, std = calc_mean_std(x) | |
| mean = mean.expand_as(x) | |
| std = std.expand_as(x) | |
| return alpha * ((x-mean)/std) + beta | |
| ############################################################################### | |
| # Defining G/D | |
| ############################################################################### | |
| def define_G(input_nc, guide_nc, output_nc, ngf, netG, n_layers=8, n_downsampling=3, n_blocks=9, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): | |
| net = None | |
| norm_layer = get_norm_layer(norm_type=norm) | |
| if netG == 'bFT_resnet': | |
| net = bFT_Resnet(input_nc, guide_nc, output_nc, ngf, norm_layer=norm_layer, n_blocks=n_blocks) | |
| elif netG == 'bFT_unet': | |
| net = bFT_Unet(input_nc, guide_nc, output_nc, n_layers, ngf, norm_layer=norm_layer) | |
| elif netG == 'bFT_unet_cat': | |
| net = bFT_Unet_cat(input_nc, guide_nc, output_nc, n_layers, ngf, norm_layer=norm_layer) | |
| elif netG == 'uFT_unet': | |
| net = uFT_Unet(input_nc, guide_nc, output_nc, n_layers, ngf, norm_layer=norm_layer) | |
| elif netG == 'concat_Unet': | |
| net = concat_Unet(input_nc, guide_nc, output_nc, n_layers, ngf, norm_layer=norm_layer) | |
| else: | |
| raise NotImplementedError('Generator model name [%s] is not recognized' % netG) | |
| net = init_net(net, init_type, init_gain, gpu_ids) | |
| return net | |
| def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', init_gain=0.02, gpu_ids=[], num_classes_D=1, use_noise=False, use_dropout=False): | |
| net = None | |
| norm_layer = get_norm_layer(norm_type=norm) | |
| if netD == 'basic': | |
| net = NLayerDiscriminator(input_nc, ndf, n_layers=n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid, num_classes_D=num_classes_D, use_noise=use_noise, use_dropout=use_dropout) | |
| elif netD == 'n_layers': | |
| net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid) | |
| elif netD == 'pixel': | |
| net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_sigmoid=use_sigmoid) | |
| else: | |
| raise NotImplementedError('Discriminator model name [%s] is not recognized' % net) | |
| return init_net(net, init_type, init_gain, gpu_ids) | |
| ############################################################################## | |
| # Classes | |
| ############################################################################## | |
| class GANLoss(nn.Module): | |
| def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0): | |
| super(GANLoss, self).__init__() | |
| self.register_buffer('real_label', torch.tensor(target_real_label)) | |
| self.register_buffer('fake_label', torch.tensor(target_fake_label)) | |
| if use_lsgan: | |
| self.loss = nn.MSELoss() | |
| else: | |
| self.loss = nn.BCELoss() | |
| def get_target_tensor(self, input, target_is_real): | |
| if target_is_real: | |
| target_tensor = self.real_label | |
| else: | |
| target_tensor = self.fake_label | |
| return target_tensor.expand_as(input) | |
| def __call__(self, input, target_is_real): | |
| target_tensor = self.get_target_tensor(input, target_is_real) | |
| return self.loss(input, target_tensor) | |
| # Define a resnet block | |
| class ResnetBlock(nn.Module): | |
| def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True)): | |
| super(ResnetBlock, self).__init__() | |
| self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation) | |
| def build_conv_block(self, dim, padding_type, norm_layer, activation): | |
| conv_block = [] | |
| p = 0 | |
| if padding_type == 'reflect': | |
| conv_block += [nn.ReflectionPad2d(1)] | |
| elif padding_type == 'replicate': | |
| conv_block += [nn.ReplicationPad2d(1)] | |
| elif padding_type == 'zero': | |
| p = 1 | |
| else: | |
| raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
| conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), | |
| norm_layer(dim), | |
| activation] | |
| p = 0 | |
| if padding_type == 'reflect': | |
| conv_block += [nn.ReflectionPad2d(1)] | |
| elif padding_type == 'replicate': | |
| conv_block += [nn.ReplicationPad2d(1)] | |
| elif padding_type == 'zero': | |
| p = 1 | |
| else: | |
| raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
| conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), | |
| norm_layer(dim)] | |
| return nn.Sequential(*conv_block) | |
| def forward(self, x): | |
| out = x + self.conv_block(x) | |
| return out | |
| ############################################################################## | |
| # Discriminators | |
| ############################################################################## | |
| # Defines the PatchGAN discriminator with the specified arguments. | |
| class NLayerDiscriminator(nn.Module): | |
| def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, num_classes_D=1, use_noise=False, use_dropout=False): | |
| super(NLayerDiscriminator, self).__init__() | |
| self.use_noise = use_noise | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| kw = 4 | |
| padw = 1 | |
| sequence = [ | |
| nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| if use_dropout: | |
| sequence.append(nn.Dropout(p=0.2)) | |
| nf_mult = 1 | |
| nf_mult_prev = 1 | |
| for n in range(1, n_layers): | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2**n, 16) | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, | |
| kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| if use_dropout: | |
| sequence.append(nn.Dropout(p=0.2)) | |
| # nf_mult_prev = nf_mult | |
| # nf_mult = min(2**n_layers, 8) | |
| # sequence += [ | |
| # nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, | |
| # kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
| # norm_layer(ndf * nf_mult), | |
| # nn.LeakyReLU(0.2, True) | |
| # ] | |
| sequence += [nn.Conv2d(ndf * nf_mult, num_classes_D, kernel_size=3, stride=1, padding=padw)] | |
| if use_sigmoid: | |
| sequence += [nn.Sigmoid()] | |
| self.model = nn.ModuleList(list(nn.Sequential(*sequence))) | |
| def forward(self, input, layers=None): | |
| input = input + torch.randn_like(input) if self.use_noise else input | |
| #output = self.model(input) | |
| output = input | |
| results = [] | |
| for ii, model in enumerate(self.model): | |
| output = model(output) | |
| if layers and ii in layers: | |
| results.append(output.view(output.shape[0], -1)) | |
| if layers == None: | |
| return output.reshape([output.shape[0], output.shape[1], -1]) | |
| return results | |
| class PixelDiscriminator(nn.Module): | |
| def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d, use_sigmoid=False): | |
| super(PixelDiscriminator, self).__init__() | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| self.net = [ | |
| nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), | |
| nn.LeakyReLU(0.2, True), | |
| nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), | |
| norm_layer(ndf * 2), | |
| nn.LeakyReLU(0.2, True), | |
| nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] | |
| if use_sigmoid: | |
| self.net.append(nn.Sigmoid()) | |
| self.net = nn.Sequential(*self.net) | |
| def forward(self, input): | |
| return self.net(input) | |
| ############################################################################## | |
| # Generators | |
| ############################################################################## | |
| class bFT_Unet(nn.Module): | |
| def __init__(self, input_nc, guide_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, bottleneck_depth=100): | |
| super(bFT_Unet, self).__init__() | |
| self.num_downs = num_downs | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| self.downconv1 = nn.Sequential(*[nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv2 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv3 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv4 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| downconv += [nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.downconv = nn.Sequential(*downconv) | |
| self.downconv5 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| ### bottleneck ------ | |
| self.upconv1 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 8)]) | |
| upconv = [] ## this has #(num_downs - 5) layers each with [relu-upconv-norm] | |
| for i in range(num_downs - 5): | |
| upconv += [nn.ReLU(True), nn.ConvTranspose2d(ngf * 8 * 2, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 8)] | |
| self.upconv = nn.Sequential(*upconv) | |
| self.upconv2 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8 * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 4)]) | |
| self.upconv3 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 4 * 2, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 2)]) | |
| self.upconv4 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2 * 2, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf)]) | |
| self.upconv5 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, output_nc, kernel_size=4, stride=2, padding=1)]) | |
| #self.upconv5 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, output_nc, kernel_size=4, stride=2, padding=1), nn.Tanh()]) | |
| ### guide downsampling | |
| self.G_downconv1 = nn.Sequential(*[nn.Conv2d(guide_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv2 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv3 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv4 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| G_downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| G_downconv += [nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.G_downconv = nn.Sequential(*G_downconv) | |
| ### bottlenecks for param generation | |
| self.bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| bottleneck_alpha = [] | |
| bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.bottleneck_alpha = nn.Sequential(*bottleneck_alpha) | |
| self.bottleneck_beta = nn.Sequential(*bottleneck_beta) | |
| ### for guide | |
| self.G_bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.G_bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| G_bottleneck_alpha = [] | |
| G_bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| G_bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| G_bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.G_bottleneck_alpha = nn.Sequential(*G_bottleneck_alpha) | |
| self.G_bottleneck_beta = nn.Sequential(*G_bottleneck_beta) | |
| def bottleneck_layer(self, nc, bottleneck_depth): | |
| return [nn.Conv2d(nc, bottleneck_depth, kernel_size=1), nn.ReLU(True), nn.Conv2d(bottleneck_depth, nc, kernel_size=1)] | |
| # per pixel | |
| def get_FiLM_param_(self, X, i, guide=False): | |
| x = X.clone() | |
| # bottleneck | |
| if guide: | |
| if (i=='2'): | |
| alpha_layer = self.G_bottleneck_alpha_2 | |
| beta_layer = self.G_bottleneck_beta_2 | |
| elif (i=='3'): | |
| alpha_layer = self.G_bottleneck_alpha_3 | |
| beta_layer = self.G_bottleneck_beta_3 | |
| elif (i=='4'): | |
| alpha_layer = self.G_bottleneck_alpha_4 | |
| beta_layer = self.G_bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.G_bottleneck_alpha[i:i+3] | |
| beta_layer = self.G_bottleneck_beta[i:i+3] | |
| else: | |
| if (i=='2'): | |
| alpha_layer = self.bottleneck_alpha_2 | |
| beta_layer = self.bottleneck_beta_2 | |
| elif (i=='3'): | |
| alpha_layer = self.bottleneck_alpha_3 | |
| beta_layer = self.bottleneck_beta_3 | |
| elif (i=='4'): | |
| alpha_layer = self.bottleneck_alpha_4 | |
| beta_layer = self.bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.bottleneck_alpha[i:i+3] | |
| beta_layer = self.bottleneck_beta[i:i+3] | |
| alpha = alpha_layer(x) | |
| beta = beta_layer(x) | |
| return alpha, beta | |
| def forward (self, input, guide): | |
| ## downconv | |
| down1 = self.downconv1(input) | |
| G_down1 = self.G_downconv1(guide) | |
| down2 = self.downconv2(down1) | |
| G_down2 = self.G_downconv2(G_down1) | |
| g_alpha2, g_beta2 = self.get_FiLM_param_(G_down2, '2', guide=True) | |
| i_alpha2, i_beta2 = self.get_FiLM_param_(down2, '2') | |
| down2 = affine_transformation(down2, g_alpha2, g_beta2) | |
| G_down2 = affine_transformation(G_down2, i_alpha2, i_beta2) | |
| down3 = self.downconv3(down2) | |
| G_down3 = self.G_downconv3(G_down2) | |
| g_alpha3, g_beta3 = self.get_FiLM_param_(G_down3, '3', guide=True) | |
| i_alpha3, i_beta3 = self.get_FiLM_param_(down3, '3') | |
| down3 = affine_transformation(down3, g_alpha3, g_beta3) | |
| G_down3 = affine_transformation(G_down3, i_alpha3, i_beta3) | |
| down4 = self.downconv4(down3) | |
| G_down4 = self.G_downconv4(G_down3) | |
| g_alpha4, g_beta4 = self.get_FiLM_param_(G_down4, '4', guide=True) | |
| i_alpha4, i_beta4 = self.get_FiLM_param_(down4, '4') | |
| down4 = affine_transformation(down4, g_alpha4, g_beta4) | |
| G_down4 = affine_transformation(G_down4, i_alpha4, i_beta4) | |
| ## (num_downs - 5) layers | |
| down = [] | |
| G_down = [] | |
| for i in range(self.num_downs - 5): | |
| layer = 2 * i | |
| bottleneck_layer = 3 * i | |
| downconv = self.downconv[layer:layer+2] | |
| G_downconv = self.G_downconv[layer:layer+2] | |
| if (layer == 0): | |
| down += [downconv(down4)] | |
| G_down += [G_downconv(G_down4)] | |
| else: | |
| down += [downconv(down[i-1])] | |
| G_down += [G_downconv(G_down[i-1])] | |
| g_alpha, g_beta = self.get_FiLM_param_(G_down[i], bottleneck_layer, guide=True) | |
| i_alpha, i_beta = self.get_FiLM_param_(down[i], bottleneck_layer) | |
| down[i] = affine_transformation(down[i], g_alpha, g_beta) | |
| G_down[i] = affine_transformation(G_down[i], i_alpha, i_beta) | |
| down5 = self.downconv5(down[-1]) | |
| ## concat and upconv | |
| up = self.upconv1(down5) | |
| num_down = self.num_downs - 5 | |
| for i in range(self.num_downs - 5): | |
| layer = 3 * i | |
| upconv = self.upconv[layer:layer+3] | |
| num_down -= 1 | |
| up = upconv(torch.cat([down[num_down], up], 1)) | |
| up = self.upconv2(torch.cat([down4,up],1)) | |
| up = self.upconv3(torch.cat([down3,up],1)) | |
| up = self.upconv4(torch.cat([down2,up],1)) | |
| up = self.upconv5(torch.cat([down1,up],1)) | |
| return up | |
| class bFT_Resnet(nn.Module): | |
| def __init__(self, input_nc, guide_nc, output_nc, ngf=64, n_blocks=9, norm_layer=nn.BatchNorm2d, | |
| padding_type='reflect', bottleneck_depth=100): | |
| super(bFT_Resnet, self).__init__() | |
| self.activation = nn.ReLU(True) | |
| n_downsampling=3 | |
| ## input | |
| padding_in = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0)] | |
| self.padding_in = nn.Sequential(*padding_in) | |
| self.conv1 = nn.Conv2d(ngf, ngf * 2, kernel_size=3, stride=2, padding=1) | |
| self.conv2 = nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=2, padding=1) | |
| self.conv3 = nn.Conv2d(ngf * 4, ngf * 8, kernel_size=3, stride=2, padding=1) | |
| ## guide | |
| padding_g = [nn.ReflectionPad2d(3), nn.Conv2d(guide_nc, ngf, kernel_size=7, padding=0)] | |
| self.padding_g = nn.Sequential(*padding_g) | |
| self.conv1_g = nn.Conv2d(ngf, ngf * 2, kernel_size=3, stride=2, padding=1) | |
| self.conv2_g = nn.Conv2d(ngf * 2, ngf * 4, kernel_size=3, stride=2, padding=1) | |
| self.conv3_g = nn.Conv2d(ngf * 4, ngf * 8, kernel_size=3, stride=2, padding=1) | |
| # bottleneck1 | |
| self.bottleneck_alpha_1 = self.bottleneck_layer(ngf, bottleneck_depth) | |
| self.G_bottleneck_alpha_1 = self.bottleneck_layer(ngf, bottleneck_depth) | |
| self.bottleneck_beta_1 = self.bottleneck_layer(ngf, bottleneck_depth) | |
| self.G_bottleneck_beta_1 = self.bottleneck_layer(ngf, bottleneck_depth) | |
| # bottleneck2 | |
| self.bottleneck_alpha_2 = self.bottleneck_layer(ngf*2, bottleneck_depth) | |
| self.G_bottleneck_alpha_2 = self.bottleneck_layer(ngf*2, bottleneck_depth) | |
| self.bottleneck_beta_2 = self.bottleneck_layer(ngf*2, bottleneck_depth) | |
| self.G_bottleneck_beta_2 = self.bottleneck_layer(ngf*2, bottleneck_depth) | |
| # bottleneck3 | |
| self.bottleneck_alpha_3 = self.bottleneck_layer(ngf*4, bottleneck_depth) | |
| self.G_bottleneck_alpha_3 = self.bottleneck_layer(ngf*4, bottleneck_depth) | |
| self.bottleneck_beta_3 = self.bottleneck_layer(ngf*4, bottleneck_depth) | |
| self.G_bottleneck_beta_3 = self.bottleneck_layer(ngf*4, bottleneck_depth) | |
| # bottleneck4 | |
| self.bottleneck_alpha_4 = self.bottleneck_layer(ngf*8, bottleneck_depth) | |
| self.G_bottleneck_alpha_4 = self.bottleneck_layer(ngf*8, bottleneck_depth) | |
| self.bottleneck_beta_4 = self.bottleneck_layer(ngf*8, bottleneck_depth) | |
| self.G_bottleneck_beta_4 = self.bottleneck_layer(ngf*8, bottleneck_depth) | |
| resnet = [] | |
| mult = 2**n_downsampling | |
| for i in range(n_blocks): | |
| resnet += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=self.activation, norm_layer=norm_layer)] | |
| self.resnet = nn.Sequential(*resnet) | |
| decoder = [] | |
| for i in range(n_downsampling): | |
| mult = 2**(n_downsampling - i) | |
| decoder += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), | |
| norm_layer(int(ngf * mult / 2)), self.activation] | |
| self.pre_decoder = nn.Sequential(*decoder) | |
| self.decoder = nn.Sequential(*[nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]) | |
| def bottleneck_layer(self, nc, bottleneck_depth): | |
| return nn.Sequential(*[nn.Conv2d(nc, bottleneck_depth, kernel_size=1), self.activation, nn.Conv2d(bottleneck_depth, nc, kernel_size=1)]) | |
| def get_FiLM_param_(self, X, i, guide=False): | |
| x = X.clone() | |
| # bottleneck | |
| if guide: | |
| if (i==1): | |
| alpha_layer = self.G_bottleneck_alpha_1 | |
| beta_layer = self.G_bottleneck_beta_1 | |
| elif (i==2): | |
| alpha_layer = self.G_bottleneck_alpha_2 | |
| beta_layer = self.G_bottleneck_beta_2 | |
| elif (i==3): | |
| alpha_layer = self.G_bottleneck_alpha_3 | |
| beta_layer = self.G_bottleneck_beta_3 | |
| elif (i==4): | |
| alpha_layer = self.G_bottleneck_alpha_4 | |
| beta_layer = self.G_bottleneck_beta_4 | |
| else: | |
| if (i==1): | |
| alpha_layer = self.bottleneck_alpha_1 | |
| beta_layer = self.bottleneck_beta_1 | |
| elif (i==2): | |
| alpha_layer = self.bottleneck_alpha_2 | |
| beta_layer = self.bottleneck_beta_2 | |
| elif (i==3): | |
| alpha_layer = self.bottleneck_alpha_3 | |
| beta_layer = self.bottleneck_beta_3 | |
| elif (i==4): | |
| alpha_layer = self.bottleneck_alpha_4 | |
| beta_layer = self.bottleneck_beta_4 | |
| alpha = alpha_layer(x) | |
| beta = beta_layer(x) | |
| return alpha, beta | |
| def forward(self, input, guidance): | |
| input = self.padding_in(input) | |
| guidance = self.padding_g(guidance) | |
| g_alpha1, g_beta1 = self.get_FiLM_param_(guidance, 1, guide=True) | |
| i_alpha1, i_beta1 = self.get_FiLM_param_(input, 1) | |
| guidance = affine_transformation(guidance, i_alpha1, i_beta1) | |
| input = affine_transformation(input, g_alpha1, g_beta1) | |
| input = self.activation(input) | |
| guidance = self.activation(guidance) | |
| input = self.conv1(input) | |
| guidance = self.conv1_g(guidance) | |
| g_alpha2, g_beta2 = self.get_FiLM_param_(guidance, 2, guide=True) | |
| i_alpha2, i_beta2 = self.get_FiLM_param_(input, 2) | |
| input = affine_transformation(input, g_alpha2, g_beta2) | |
| guidance = affine_transformation(guidance, i_alpha2, i_beta2) | |
| input = self.activation(input) | |
| guidance = self.activation(guidance) | |
| input = self.conv2(input) | |
| guidance = self.conv2_g(guidance) | |
| g_alpha3, g_beta3 = self.get_FiLM_param_(guidance, 3, guide=True) | |
| i_alpha3, i_beta3 = self.get_FiLM_param_(input, 3) | |
| input = affine_transformation(input, g_alpha3, g_beta3) | |
| guidance = affine_transformation(guidance, i_alpha3, i_beta3) | |
| input = self.activation(input) | |
| guidance = self.activation(guidance) | |
| input = self.conv3(input) | |
| guidance = self.conv3_g(guidance) | |
| g_alpha4, g_beta4 = self.get_FiLM_param_(guidance, 4, guide=True) | |
| input = affine_transformation(input, g_alpha4, g_beta4) | |
| input = self.activation(input) | |
| input = self.resnet(input) | |
| input = self.pre_decoder(input) | |
| output = self.decoder(input) | |
| return output | |
| class bFT_Unet_cat(nn.Module): | |
| def __init__(self, input_nc, guide_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, bottleneck_depth=100): | |
| super(bFT_Unet_cat, self).__init__() | |
| self.num_downs = num_downs | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| self.downconv1 = nn.Sequential(*[nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv2 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv3 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv4 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| downconv += [nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.downconv = nn.Sequential(*downconv) | |
| self.downconv5 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| ### bottleneck ------ | |
| self.upconv1 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 8)]) | |
| upconv = [] ## this has #(num_downs - 5) layers each with [relu-upconv-norm] | |
| for i in range(num_downs - 5): | |
| upconv += [nn.ReLU(True), nn.ConvTranspose2d(ngf * 8 * 2, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 8)] | |
| self.upconv = nn.Sequential(*upconv) | |
| self.upconv2 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8 * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 4)]) | |
| self.upconv3 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 4 * 2, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 2)]) | |
| self.upconv4 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2 * 2, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf)]) | |
| self.upconv5 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, output_nc, kernel_size=4, stride=2, padding=1), nn.Tanh()]) | |
| ### guide downsampling | |
| self.G_downconv1 = nn.Sequential(*[nn.Conv2d(guide_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv2 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv3 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv4 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| G_downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| G_downconv += [nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.G_downconv = nn.Sequential(*G_downconv) | |
| ### bottlenecks for param generation | |
| self.bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| bottleneck_alpha = [] | |
| bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.bottleneck_alpha = nn.Sequential(*bottleneck_alpha) | |
| self.bottleneck_beta = nn.Sequential(*bottleneck_beta) | |
| ### for guide | |
| self.G_bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.G_bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| G_bottleneck_alpha = [] | |
| G_bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| G_bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| G_bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.G_bottleneck_alpha = nn.Sequential(*G_bottleneck_alpha) | |
| self.G_bottleneck_beta = nn.Sequential(*G_bottleneck_beta) | |
| def bottleneck_layer(self, nc, bottleneck_depth): | |
| return [nn.Conv2d(nc, bottleneck_depth, kernel_size=1), nn.ReLU(True), nn.Conv2d(bottleneck_depth, nc, kernel_size=1)] | |
| # per pixel | |
| def get_FiLM_param_(self, X, i, guide=False): | |
| x = X.clone() | |
| # bottleneck | |
| if guide: | |
| if (i=='2'): | |
| alpha_layer = self.G_bottleneck_alpha_2 | |
| beta_layer = self.G_bottleneck_beta_2 | |
| elif (i=='3'): | |
| alpha_layer = self.G_bottleneck_alpha_3 | |
| beta_layer = self.G_bottleneck_beta_3 | |
| elif (i=='4'): | |
| alpha_layer = self.G_bottleneck_alpha_4 | |
| beta_layer = self.G_bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.G_bottleneck_alpha[i:i+3] | |
| beta_layer = self.G_bottleneck_beta[i:i+3] | |
| else: | |
| if (i=='2'): | |
| alpha_layer = self.bottleneck_alpha_2 | |
| beta_layer = self.bottleneck_beta_2 | |
| elif (i=='3'): | |
| alpha_layer = self.bottleneck_alpha_3 | |
| beta_layer = self.bottleneck_beta_3 | |
| elif (i=='4'): | |
| alpha_layer = self.bottleneck_alpha_4 | |
| beta_layer = self.bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.bottleneck_alpha[i:i+3] | |
| beta_layer = self.bottleneck_beta[i:i+3] | |
| alpha = alpha_layer(x) | |
| beta = beta_layer(x) | |
| return alpha, beta | |
| def forward (self, input, guide): | |
| ## downconv | |
| down1 = self.downconv1(input) | |
| G_down1 = self.G_downconv1(guide) | |
| down2 = self.downconv2(down1) | |
| G_down2 = self.G_downconv2(G_down1) | |
| # g_alpha2, g_beta2 = self.get_FiLM_param_(G_down2, '2', guide=True) | |
| # i_alpha2, i_beta2 = self.get_FiLM_param_(down2, '2') | |
| # down2 = affine_transformation(down2, g_alpha2, g_beta2) | |
| # G_down2 = affine_transformation(G_down2, i_alpha2, i_beta2) | |
| down3 = self.downconv3(down2) | |
| G_down3 = self.G_downconv3(G_down2) | |
| # g_alpha3, g_beta3 = self.get_FiLM_param_(G_down3, '3', guide=True) | |
| # i_alpha3, i_beta3 = self.get_FiLM_param_(down3, '3') | |
| # down3 = affine_transformation(down3, g_alpha3, g_beta3) | |
| # G_down3 = affine_transformation(G_down3, i_alpha3, i_beta3) | |
| down4 = self.downconv4(down3) | |
| G_down4 = self.G_downconv4(G_down3) | |
| # g_alpha4, g_beta4 = self.get_FiLM_param_(G_down4, '4', guide=True) | |
| # i_alpha4, i_beta4 = self.get_FiLM_param_(down4, '4') | |
| # down4 = affine_transformation(down4, g_alpha4, g_beta4) | |
| # G_down4 = affine_transformation(G_down4, i_alpha4, i_beta4) | |
| ## (num_downs - 5) layers | |
| down = [] | |
| G_down = [] | |
| for i in range(self.num_downs - 5): | |
| layer = 2 * i | |
| bottleneck_layer = 3 * i | |
| downconv = self.downconv[layer:layer+2] | |
| G_downconv = self.G_downconv[layer:layer+2] | |
| if (layer == 0): | |
| down += [downconv(down4)] | |
| G_down += [G_downconv(G_down4)] | |
| else: | |
| down += [downconv(down[i-1])] | |
| G_down += [G_downconv(G_down[i-1])] | |
| # g_alpha, g_beta = self.get_FiLM_param_(G_down[i], bottleneck_layer, guide=True) | |
| # i_alpha, i_beta = self.get_FiLM_param_(down[i], bottleneck_layer) | |
| # down[i] = affine_transformation(down[i], g_alpha, g_beta) | |
| # G_down[i] = affine_transformation(G_down[i], i_alpha, i_beta) | |
| down5 = self.downconv5(down[-1]) | |
| ## concat and upconv | |
| up = self.upconv1(down5) | |
| num_down = self.num_downs - 5 | |
| for i in range(self.num_downs - 5): | |
| layer = 3 * i | |
| upconv = self.upconv[layer:layer+3] | |
| num_down -= 1 | |
| up = upconv(torch.cat([down[num_down], up], 1)) | |
| up = self.upconv2(torch.cat([down4,up],1)) | |
| up = self.upconv3(torch.cat([down3,up],1)) | |
| up = self.upconv4(torch.cat([down2,up],1)) | |
| up = self.upconv5(torch.cat([down1,up],1)) | |
| return up | |
| class uFT_Unet(nn.Module): | |
| def __init__(self, input_nc, guide_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, bottleneck_depth=100): | |
| super(uFT_Unet, self).__init__() | |
| self.num_downs = num_downs | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| self.downconv1 = nn.Sequential(*[nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv2 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv3 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv4 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| downconv += [nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.downconv = nn.Sequential(*downconv) | |
| self.downconv5 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| ### bottleneck ------ | |
| self.upconv1 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 8)]) | |
| upconv = [] ## this has #(num_downs - 5) layers each with [relu-upconv-norm] | |
| for i in range(num_downs - 5): | |
| upconv += [nn.ReLU(True), nn.ConvTranspose2d(ngf * 8 * 2, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 8)] | |
| self.upconv = nn.Sequential(*upconv) | |
| self.upconv2 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8 * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 4)]) | |
| self.upconv3 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 4 * 2, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf * 2)]) | |
| self.upconv4 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2 * 2, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(ngf)]) | |
| self.upconv5 = nn.Sequential(*[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, output_nc, kernel_size=4, stride=2, padding=1), nn.Tanh()]) | |
| ### guide downsampling | |
| self.G_downconv1 = nn.Sequential(*[nn.Conv2d(guide_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv2 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv3 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv4 = nn.Sequential(*[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| G_downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| G_downconv += [nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.G_downconv = nn.Sequential(*G_downconv) | |
| ### bottlenecks for param generation | |
| self.bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| bottleneck_alpha = [] | |
| bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.bottleneck_alpha = nn.Sequential(*bottleneck_alpha) | |
| self.bottleneck_beta = nn.Sequential(*bottleneck_beta) | |
| ### for guide | |
| self.G_bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.G_bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| G_bottleneck_alpha = [] | |
| G_bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| G_bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| G_bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.G_bottleneck_alpha = nn.Sequential(*G_bottleneck_alpha) | |
| self.G_bottleneck_beta = nn.Sequential(*G_bottleneck_beta) | |
| def bottleneck_layer(self, nc, bottleneck_depth): | |
| return [nn.Conv2d(nc, bottleneck_depth, kernel_size=1), nn.ReLU(True), nn.Conv2d(bottleneck_depth, nc, kernel_size=1)] | |
| # per pixel | |
| def get_FiLM_param_(self, X, i, guide=False): | |
| x = X.clone() | |
| # bottleneck | |
| if guide: | |
| if (i=='2'): | |
| alpha_layer = self.G_bottleneck_alpha_2 | |
| beta_layer = self.G_bottleneck_beta_2 | |
| elif (i=='3'): | |
| alpha_layer = self.G_bottleneck_alpha_3 | |
| beta_layer = self.G_bottleneck_beta_3 | |
| elif (i=='4'): | |
| alpha_layer = self.G_bottleneck_alpha_4 | |
| beta_layer = self.G_bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.G_bottleneck_alpha[i:i+3] | |
| beta_layer = self.G_bottleneck_beta[i:i+3] | |
| else: | |
| if (i=='2'): | |
| alpha_layer = self.bottleneck_alpha_2 | |
| beta_layer = self.bottleneck_beta_2 | |
| elif (i=='3'): | |
| alpha_layer = self.bottleneck_alpha_3 | |
| beta_layer = self.bottleneck_beta_3 | |
| elif (i=='4'): | |
| alpha_layer = self.bottleneck_alpha_4 | |
| beta_layer = self.bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.bottleneck_alpha[i:i+3] | |
| beta_layer = self.bottleneck_beta[i:i+3] | |
| alpha = alpha_layer(x) | |
| beta = beta_layer(x) | |
| return alpha, beta | |
| def forward (self, input, guide): | |
| ## downconv | |
| down1 = self.downconv1(input) | |
| G_down1 = self.G_downconv1(guide) | |
| down2 = self.downconv2(down1) | |
| G_down2 = self.G_downconv2(G_down1) | |
| g_alpha2, g_beta2 = self.get_FiLM_param_(G_down2, '2', guide=True) | |
| #i_alpha2, i_beta2 = self.get_FiLM_param_(down2, '2') | |
| down2 = affine_transformation(down2, g_alpha2, g_beta2) | |
| #G_down2 = affine_transformation(G_down2, i_alpha2, i_beta2) | |
| down3 = self.downconv3(down2) | |
| G_down3 = self.G_downconv3(G_down2) | |
| g_alpha3, g_beta3 = self.get_FiLM_param_(G_down3, '3', guide=True) | |
| #i_alpha3, i_beta3 = self.get_FiLM_param_(down3, '3') | |
| down3 = affine_transformation(down3, g_alpha3, g_beta3) | |
| #G_down3 = affine_transformation(G_down3, i_alpha3, i_beta3) | |
| down4 = self.downconv4(down3) | |
| G_down4 = self.G_downconv4(G_down3) | |
| g_alpha4, g_beta4 = self.get_FiLM_param_(G_down4, '4', guide=True) | |
| #i_alpha4, i_beta4 = self.get_FiLM_param_(down4, '4') | |
| down4 = affine_transformation(down4, g_alpha4, g_beta4) | |
| #G_down4 = affine_transformation(G_down4, i_alpha4, i_beta4) | |
| ## (num_downs - 5) layers | |
| down = [] | |
| G_down = [] | |
| for i in range(self.num_downs - 5): | |
| layer = 2 * i | |
| bottleneck_layer = 3 * i | |
| downconv = self.downconv[layer:layer+2] | |
| G_downconv = self.G_downconv[layer:layer+2] | |
| if (layer == 0): | |
| down += [downconv(down4)] | |
| G_down += [G_downconv(G_down4)] | |
| else: | |
| down += [downconv(down[i-1])] | |
| G_down += [G_downconv(G_down[i-1])] | |
| g_alpha, g_beta = self.get_FiLM_param_(G_down[i], bottleneck_layer, guide=True) | |
| #i_alpha, i_beta = self.get_FiLM_param_(down[i], bottleneck_layer) | |
| down[i] = affine_transformation(down[i], g_alpha, g_beta) | |
| #G_down[i] = affine_transformation(G_down[i], i_alpha, i_beta) | |
| down5 = self.downconv5(down[-1]) | |
| ## concat and upconv | |
| up = self.upconv1(down5) | |
| num_down = self.num_downs - 5 | |
| for i in range(self.num_downs - 5): | |
| layer = 3 * i | |
| upconv = self.upconv[layer:layer+3] | |
| num_down -= 1 | |
| up = upconv(torch.cat([down[num_down], up], 1)) | |
| up = self.upconv2(torch.cat([down4,up],1)) | |
| up = self.upconv3(torch.cat([down3,up],1)) | |
| up = self.upconv4(torch.cat([down2,up],1)) | |
| up = self.upconv5(torch.cat([down1,up],1)) | |
| return up | |
| # concat input and guide image | |
| class concat_Unet(nn.Module): | |
| def __init__(self, input_nc, guide_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, | |
| bottleneck_depth=100): | |
| super(concat_Unet, self).__init__() | |
| self.num_downs = num_downs | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| self.downconv1 = nn.Sequential(*[nn.Conv2d(input_nc+guide_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv2 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv3 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.downconv4 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| downconv += [nn.LeakyReLU(0.2, True), | |
| nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.downconv = nn.Sequential(*downconv) | |
| self.downconv5 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| ### bottleneck ------ | |
| self.upconv1 = nn.Sequential( | |
| *[nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), | |
| norm_layer(ngf * 8)]) | |
| upconv = [] ## this has #(num_downs - 5) layers each with [relu-upconv-norm] | |
| for i in range(num_downs - 5): | |
| upconv += [nn.ReLU(True), | |
| nn.ConvTranspose2d(ngf * 8 * 2, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias), | |
| norm_layer(ngf * 8)] | |
| self.upconv = nn.Sequential(*upconv) | |
| self.upconv2 = nn.Sequential(*[nn.ReLU(True), | |
| nn.ConvTranspose2d(ngf * 8 * 2, ngf * 4, kernel_size=4, stride=2, padding=1, | |
| bias=use_bias), norm_layer(ngf * 4)]) | |
| self.upconv3 = nn.Sequential(*[nn.ReLU(True), | |
| nn.ConvTranspose2d(ngf * 4 * 2, ngf * 2, kernel_size=4, stride=2, padding=1, | |
| bias=use_bias), norm_layer(ngf * 2)]) | |
| self.upconv4 = nn.Sequential( | |
| *[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2 * 2, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias), | |
| norm_layer(ngf)]) | |
| self.upconv5 = nn.Sequential( | |
| *[nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, output_nc, kernel_size=4, stride=2, padding=1), nn.Tanh()]) | |
| ### guide downsampling | |
| self.G_downconv1 = nn.Sequential(*[nn.Conv2d(guide_nc, ngf, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv2 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf, ngf * 2, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv3 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 2, ngf * 4, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| self.G_downconv4 = nn.Sequential( | |
| *[nn.LeakyReLU(0.2, True), nn.Conv2d(ngf * 4, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)]) | |
| G_downconv = [] ## this has #(num_downs - 5) layers each with [relu-downconv-norm] | |
| for i in range(num_downs - 5): | |
| G_downconv += [nn.LeakyReLU(0.2, True), | |
| nn.Conv2d(ngf * 8, ngf * 8, kernel_size=4, stride=2, padding=1, bias=use_bias)] | |
| self.G_downconv = nn.Sequential(*G_downconv) | |
| ### bottlenecks for param generation | |
| self.bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| bottleneck_alpha = [] | |
| bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.bottleneck_alpha = nn.Sequential(*bottleneck_alpha) | |
| self.bottleneck_beta = nn.Sequential(*bottleneck_beta) | |
| ### for guide | |
| self.G_bottleneck_alpha_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_beta_2 = nn.Sequential(*self.bottleneck_layer(ngf * 2, bottleneck_depth)) | |
| self.G_bottleneck_alpha_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_beta_3 = nn.Sequential(*self.bottleneck_layer(ngf * 4, bottleneck_depth)) | |
| self.G_bottleneck_alpha_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| self.G_bottleneck_beta_4 = nn.Sequential(*self.bottleneck_layer(ngf * 8, bottleneck_depth)) | |
| G_bottleneck_alpha = [] | |
| G_bottleneck_beta = [] | |
| for i in range(num_downs - 5): | |
| G_bottleneck_alpha += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| G_bottleneck_beta += self.bottleneck_layer(ngf * 8, bottleneck_depth) | |
| self.G_bottleneck_alpha = nn.Sequential(*G_bottleneck_alpha) | |
| self.G_bottleneck_beta = nn.Sequential(*G_bottleneck_beta) | |
| def bottleneck_layer(self, nc, bottleneck_depth): | |
| return [nn.Conv2d(nc, bottleneck_depth, kernel_size=1), nn.ReLU(True), | |
| nn.Conv2d(bottleneck_depth, nc, kernel_size=1)] | |
| # per pixel | |
| def get_FiLM_param_(self, X, i, guide=False): | |
| x = X.clone() | |
| # bottleneck | |
| if guide: | |
| if (i == '2'): | |
| alpha_layer = self.G_bottleneck_alpha_2 | |
| beta_layer = self.G_bottleneck_beta_2 | |
| elif (i == '3'): | |
| alpha_layer = self.G_bottleneck_alpha_3 | |
| beta_layer = self.G_bottleneck_beta_3 | |
| elif (i == '4'): | |
| alpha_layer = self.G_bottleneck_alpha_4 | |
| beta_layer = self.G_bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.G_bottleneck_alpha[i:i + 3] | |
| beta_layer = self.G_bottleneck_beta[i:i + 3] | |
| else: | |
| if (i == '2'): | |
| alpha_layer = self.bottleneck_alpha_2 | |
| beta_layer = self.bottleneck_beta_2 | |
| elif (i == '3'): | |
| alpha_layer = self.bottleneck_alpha_3 | |
| beta_layer = self.bottleneck_beta_3 | |
| elif (i == '4'): | |
| alpha_layer = self.bottleneck_alpha_4 | |
| beta_layer = self.bottleneck_beta_4 | |
| else: # a number i will be given to specify which bottleneck to use | |
| alpha_layer = self.bottleneck_alpha[i:i + 3] | |
| beta_layer = self.bottleneck_beta[i:i + 3] | |
| alpha = alpha_layer(x) | |
| beta = beta_layer(x) | |
| return alpha, beta | |
| def forward(self, input, guide): | |
| ## downconv | |
| input = torch.cat((input, guide), dim=1) | |
| down1 = self.downconv1(input) | |
| #G_down1 = self.G_downconv1(guide) | |
| down2 = self.downconv2(down1) | |
| #G_down2 = self.G_downconv2(G_down1) | |
| #g_alpha2, g_beta2 = self.get_FiLM_param_(G_down2, '2', guide=True) | |
| #i_alpha2, i_beta2 = self.get_FiLM_param_(down2, '2') | |
| #down2 = affine_transformation(down2, g_alpha2, g_beta2) | |
| #G_down2 = affine_transformation(G_down2, i_alpha2, i_beta2) | |
| down3 = self.downconv3(down2) | |
| #G_down3 = self.G_downconv3(G_down2) | |
| #g_alpha3, g_beta3 = self.get_FiLM_param_(G_down3, '3', guide=True) | |
| #i_alpha3, i_beta3 = self.get_FiLM_param_(down3, '3') | |
| #down3 = affine_transformation(down3, g_alpha3, g_beta3) | |
| #G_down3 = affine_transformation(G_down3, i_alpha3, i_beta3) | |
| down4 = self.downconv4(down3) | |
| #G_down4 = self.G_downconv4(G_down3) | |
| #g_alpha4, g_beta4 = self.get_FiLM_param_(G_down4, '4', guide=True) | |
| #i_alpha4, i_beta4 = self.get_FiLM_param_(down4, '4') | |
| #down4 = affine_transformation(down4, g_alpha4, g_beta4) | |
| #G_down4 = affine_transformation(G_down4, i_alpha4, i_beta4) | |
| ## (num_downs - 5) layers | |
| down = [] | |
| #G_down = [] | |
| for i in range(self.num_downs - 5): | |
| layer = 2 * i | |
| bottleneck_layer = 3 * i | |
| downconv = self.downconv[layer:layer + 2] | |
| G_downconv = self.G_downconv[layer:layer + 2] | |
| if (layer == 0): | |
| down += [downconv(down4)] | |
| #G_down += [G_downconv(G_down4)] | |
| else: | |
| down += [downconv(down[i - 1])] | |
| #G_down += [G_downconv(G_down[i - 1])] | |
| #g_alpha, g_beta = self.get_FiLM_param_(G_down[i], bottleneck_layer, guide=True) | |
| #i_alpha, i_beta = self.get_FiLM_param_(down[i], bottleneck_layer) | |
| #down[i] = affine_transformation(down[i], g_alpha, g_beta) | |
| #G_down[i] = affine_transformation(G_down[i], i_alpha, i_beta) | |
| down5 = self.downconv5(down[-1]) | |
| ## concat and upconv | |
| up = self.upconv1(down5) | |
| num_down = self.num_downs - 5 | |
| for i in range(self.num_downs - 5): | |
| layer = 3 * i | |
| upconv = self.upconv[layer:layer + 3] | |
| num_down -= 1 | |
| up = upconv(torch.cat([down[num_down], up], 1)) | |
| up = self.upconv2(torch.cat([down4, up], 1)) | |
| up = self.upconv3(torch.cat([down3, up], 1)) | |
| up = self.upconv4(torch.cat([down2, up], 1)) | |
| up = self.upconv5(torch.cat([down1, up], 1)) | |
| return up | |
| if __name__ == '__main__': | |
| model = NLayerDiscriminator(input_nc=3, ndf=64,num_classes_D=1, n_layers=3, norm_layer=nn.BatchNorm2d) | |
| x = torch.randn(1, 3, 256, 256) | |
| o = model(x) | |
| label_shape = [1,1, o.shape[2]] | |
| # 0, 1 | |
| label_real = torch.zeros(label_shape) | |
| label_fake = torch.ones(label_shape) | |
| print(label_real.shape) | |
| k = nn.BCEWithLogitsLoss()(o, label_real) | |
| print(k) | |