Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import detectron2
|
| 3 |
+
except:
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
| 7 |
+
|
| 8 |
+
from matplotlib.pyplot import axis
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import requests
|
| 11 |
+
import numpy as np
|
| 12 |
+
from torch import nn
|
| 13 |
+
import requests
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from detectron2 import model_zoo
|
| 18 |
+
from detectron2.engine import DefaultPredictor
|
| 19 |
+
from detectron2.config import get_cfg
|
| 20 |
+
from detectron2.utils.visualizer import Visualizer
|
| 21 |
+
from detectron2.data import MetadataCatalog
|
| 22 |
+
|
| 23 |
+
url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg'
|
| 24 |
+
r = requests.get(url1, allow_redirects=True)
|
| 25 |
+
open("city1.jpg", 'wb').write(r.content)
|
| 26 |
+
url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg'
|
| 27 |
+
r = requests.get(url2, allow_redirects=True)
|
| 28 |
+
open("city2.jpg", 'wb').write(r.content)
|
| 29 |
+
|
| 30 |
+
model_name = 'COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml'
|
| 31 |
+
|
| 32 |
+
# model = model_zoo.get(model_name, trained=True)
|
| 33 |
+
|
| 34 |
+
cfg = get_cfg()
|
| 35 |
+
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
|
| 36 |
+
cfg.merge_from_file(model_zoo.get_config_file(model_name))
|
| 37 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
|
| 38 |
+
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as w ell
|
| 39 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(model_name)
|
| 40 |
+
|
| 41 |
+
if not torch.cuda.is_available():
|
| 42 |
+
cfg.MODEL.DEVICE = 'cpu'
|
| 43 |
+
|
| 44 |
+
predictor = DefaultPredictor(cfg)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def inference(image):
|
| 48 |
+
img = np.array(image.resize((1024, 1024)))
|
| 49 |
+
outputs = predictor(img)
|
| 50 |
+
|
| 51 |
+
v = Visualizer(img, MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
|
| 52 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
| 53 |
+
|
| 54 |
+
return out.get_image()
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
title = "Detectron2-MaskRCNN X101"
|
| 58 |
+
description = "demo for Detectron2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\
|
| 59 |
+
</br><b>Model: COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml</b>"
|
| 60 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.07177'>Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation</a> | <a href='https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md'>Detectron model ZOO</a></p>"
|
| 61 |
+
|
| 62 |
+
gr.Interface(
|
| 63 |
+
inference,
|
| 64 |
+
[gr.inputs.Image(type="pil", label="Input")],
|
| 65 |
+
gr.outputs.Image(type="numpy", label="Output"),
|
| 66 |
+
title=title,
|
| 67 |
+
description=description,
|
| 68 |
+
article=article,
|
| 69 |
+
examples=[
|
| 70 |
+
["city1.jpg"],
|
| 71 |
+
["city2.jpg"]
|
| 72 |
+
]).launch()
|