Spaces:
Running
Running
| import torch | |
| from .ctc_postprocess import BaseRecLabelDecode | |
| class CELabelDecode(BaseRecLabelDecode): | |
| """Convert between text-label and text-index.""" | |
| def __init__(self, | |
| character_dict_path=None, | |
| use_space_char=False, | |
| **kwargs): | |
| super(CELabelDecode, self).__init__(character_dict_path, | |
| use_space_char) | |
| def __call__(self, preds, label=None, *args, **kwargs): | |
| if isinstance(preds, tuple) or isinstance(preds, list): | |
| preds = preds[-1] | |
| if isinstance(preds, torch.Tensor): | |
| preds = preds.numpy() | |
| preds_idx = preds.argmax(axis=-1) | |
| preds_prob = preds.max(axis=-1) | |
| text = self.decode(preds_idx, preds_prob) | |
| if label is None: | |
| return text | |
| label = self.decode(label.flatten()) | |
| return text, label | |
| def decode(self, text_index, text_prob=None): | |
| """convert text-index into text-label.""" | |
| result_list = [] | |
| batch_size = len(text_index) | |
| for batch_idx in range(batch_size): | |
| text = self.character[text_index[batch_idx]] | |
| if text_prob is not None: | |
| conf_list = text_prob[batch_idx] | |
| else: | |
| conf_list = 1.0 | |
| result_list.append((text, conf_list)) | |
| return result_list | |
| def add_special_char(self, dict_character): | |
| return dict_character | |