Spaces:
Sleeping
Sleeping
Update link4 (2).py
Browse files- link4 (2).py +2 -213
link4 (2).py
CHANGED
|
@@ -1,181 +1,3 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""link4.ipynb
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1yTE900ZWoLy3vQwKE1Y-Qbm263XCIuN7
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
!pip install selenium
|
| 11 |
-
!pip install webdriver-manager
|
| 12 |
-
!pip install pyshark
|
| 13 |
-
!pip install gradio
|
| 14 |
-
!apt-get update
|
| 15 |
-
!apt-get install -y tshark
|
| 16 |
-
!tshark --version
|
| 17 |
-
!pip install gradio requests scapy joblib pyshark
|
| 18 |
-
|
| 19 |
-
from google.colab import drive
|
| 20 |
-
drive.mount('/content/drive')
|
| 21 |
-
|
| 22 |
-
import pandas as pd
|
| 23 |
-
from sklearn.model_selection import train_test_split, cross_val_score
|
| 24 |
-
from sklearn.ensemble import ExtraTreesClassifier
|
| 25 |
-
from sklearn.metrics import classification_report
|
| 26 |
-
import joblib
|
| 27 |
-
import subprocess
|
| 28 |
-
import time
|
| 29 |
-
from selenium import webdriver
|
| 30 |
-
from selenium.webdriver.chrome.service import Service
|
| 31 |
-
from webdriver_manager.chrome import ChromeDriverManager
|
| 32 |
-
from selenium.webdriver.chrome.options import Options
|
| 33 |
-
import pyshark
|
| 34 |
-
import numpy as np
|
| 35 |
-
|
| 36 |
-
file_paths = [
|
| 37 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv',
|
| 38 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv',
|
| 39 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Friday-WorkingHours-Morning.pcap_ISCX.csv',
|
| 40 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Monday-WorkingHours.pcap_ISCX.csv',
|
| 41 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX.csv',
|
| 42 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv',
|
| 43 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Tuesday-WorkingHours.pcap_ISCX.csv',
|
| 44 |
-
'/content/drive/MyDrive/Colab Notebooks/link1/Wednesday-workingHours.pcap_ISCX.csv'
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
# Combine all files into a single DataFrame
|
| 48 |
-
df = pd.concat([pd.read_csv(file) for file in file_paths], ignore_index=True)
|
| 49 |
-
|
| 50 |
-
# Strip any leading or trailing spaces from column names
|
| 51 |
-
df.columns = df.columns.str.strip()
|
| 52 |
-
|
| 53 |
-
# Print the first few rows and column names to verify
|
| 54 |
-
print("Columns in DataFrame:")
|
| 55 |
-
print(df.columns)
|
| 56 |
-
|
| 57 |
-
# Check if 'Label' exists
|
| 58 |
-
if 'Label' not in df.columns:
|
| 59 |
-
print("Error: 'Label' column not found in the dataset.")
|
| 60 |
-
else:
|
| 61 |
-
# Proceed with mapping the labels to "benign" or "malicious"
|
| 62 |
-
label_mapping = {
|
| 63 |
-
'BENIGN': 'benign',
|
| 64 |
-
'DDoS': 'malicious',
|
| 65 |
-
'PortScan': 'malicious',
|
| 66 |
-
'Bot': 'malicious',
|
| 67 |
-
'Infiltration': 'malicious',
|
| 68 |
-
'Web Attack': 'malicious',
|
| 69 |
-
# Add other malicious classes here if necessary
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
# Map the labels and fill missing values with 'malicious'
|
| 73 |
-
df['Label'] = df['Label'].map(label_mapping).fillna('malicious')
|
| 74 |
-
|
| 75 |
-
# Convert categorical labels to numerical
|
| 76 |
-
df['Label'] = df['Label'].astype('category').cat.codes
|
| 77 |
-
|
| 78 |
-
# Define features and target
|
| 79 |
-
all_features = df.columns.drop('Label')
|
| 80 |
-
features = df[all_features]
|
| 81 |
-
target = df['Label']
|
| 82 |
-
|
| 83 |
-
# Print first few rows of the processed DataFrame
|
| 84 |
-
print(df.head())
|
| 85 |
-
print(df.columns)
|
| 86 |
-
print(f"Features columns: {features.columns}")
|
| 87 |
-
print(f"Target unique values: {target.unique()}")
|
| 88 |
-
|
| 89 |
-
from sklearn.impute import SimpleImputer
|
| 90 |
-
from sklearn.preprocessing import StandardScaler
|
| 91 |
-
print(f"Missing values in features:\n{features.isnull().sum()}")
|
| 92 |
-
print(f"Missing values in target:\n{target.isnull().sum()}")
|
| 93 |
-
print(f"Infinites in features:\n{np.isinf(features).sum()}")
|
| 94 |
-
|
| 95 |
-
# Replace infinite values with NaN
|
| 96 |
-
features.replace([np.inf, -np.inf], np.nan, inplace=True)
|
| 97 |
-
|
| 98 |
-
# Handle missing values: Impute with the mean (for numerical features)
|
| 99 |
-
imputer = SimpleImputer(strategy='mean')
|
| 100 |
-
features_imputed = imputer.fit_transform(features)
|
| 101 |
-
|
| 102 |
-
# Normalize features to handle large values
|
| 103 |
-
scaler = StandardScaler()
|
| 104 |
-
features_scaled = scaler.fit_transform(features_imputed)
|
| 105 |
-
|
| 106 |
-
# Split data into training and testing sets
|
| 107 |
-
X_train, X_test, y_train, y_test = train_test_split(features_imputed, target, test_size=0.3, random_state=42, stratify=target)
|
| 108 |
-
|
| 109 |
-
# Initialize and train the Extra Trees model
|
| 110 |
-
model = ExtraTreesClassifier(n_estimators=100, random_state=42)
|
| 111 |
-
model.fit(X_train, y_train)
|
| 112 |
-
|
| 113 |
-
y_pred = model.predict(X_test)
|
| 114 |
-
print(classification_report(y_test, y_pred))
|
| 115 |
-
from sklearn.metrics import accuracy_score, classification_report
|
| 116 |
-
train_predictions = model.predict(X_train)
|
| 117 |
-
test_predictions = model.predict(X_test)
|
| 118 |
-
|
| 119 |
-
train_accuracy = accuracy_score(y_train, train_predictions)
|
| 120 |
-
test_accuracy = accuracy_score(y_test, test_predictions)
|
| 121 |
-
|
| 122 |
-
print(f"Training Accuracy: {train_accuracy:.4f}")
|
| 123 |
-
print(f"Testing Accuracy: {test_accuracy:.4f}")
|
| 124 |
-
|
| 125 |
-
print("Classification Report (Test Data):")
|
| 126 |
-
print(classification_report(y_test, test_predictions))
|
| 127 |
-
|
| 128 |
-
# Save the model and feature names
|
| 129 |
-
joblib.dump(model, 'extratrees.pkl')
|
| 130 |
-
joblib.dump(all_features.tolist(), 'featurenames.pkl')
|
| 131 |
-
import joblib
|
| 132 |
-
|
| 133 |
-
# Load the model and feature names
|
| 134 |
-
loaded_model = joblib.load('extratrees.pkl')
|
| 135 |
-
loaded_features = joblib.load('featurenames.pkl')
|
| 136 |
-
|
| 137 |
-
# Check if they are loaded successfully
|
| 138 |
-
print(f"Model Loaded: {loaded_model is not None}")
|
| 139 |
-
print(f"Features Loaded: {loaded_features is not None}")
|
| 140 |
-
|
| 141 |
-
# prompt: print different styles and new styles for the classification report\
|
| 142 |
-
import matplotlib.pyplot as plt
|
| 143 |
-
import seaborn as sns
|
| 144 |
-
from sklearn.metrics import classification_report
|
| 145 |
-
def plot_classification_report_styled(y_true, y_pred):
|
| 146 |
-
report = classification_report(y_true, y_pred, output_dict=True)
|
| 147 |
-
df_report = pd.DataFrame(report).transpose()
|
| 148 |
-
|
| 149 |
-
# Style the DataFrame with different colors and formatting
|
| 150 |
-
styled_report = df_report.style.background_gradient(cmap='viridis', axis=None) \
|
| 151 |
-
.highlight_max(color='lightgreen', axis=0) \
|
| 152 |
-
.highlight_min(color='lightcoral', axis=0) \
|
| 153 |
-
.format('{:.2f}')
|
| 154 |
-
|
| 155 |
-
# Display the styled report
|
| 156 |
-
display(styled_report)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
# Use the new function to display a styled classification report
|
| 160 |
-
plot_classification_report_styled(y_test, y_pred)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
# Alternative Styling using Seaborn and Matplotlib with customization
|
| 164 |
-
|
| 165 |
-
def plot_classification_report_seaborn_styled(y_true, y_pred):
|
| 166 |
-
report = classification_report(y_true, y_pred, output_dict=True)
|
| 167 |
-
df_report = pd.DataFrame(report).transpose()
|
| 168 |
-
plt.figure(figsize=(10, 6))
|
| 169 |
-
sns.heatmap(df_report[['precision', 'recall', 'f1-score']], annot=True, fmt=".2f", cmap="YlGnBu", linewidths=.5, annot_kws={"size": 12})
|
| 170 |
-
plt.title("Classification Report Heatmap", fontsize=16)
|
| 171 |
-
plt.xlabel("Metrics", fontsize=14)
|
| 172 |
-
plt.ylabel("Classes", fontsize=14)
|
| 173 |
-
plt.xticks(fontsize=12)
|
| 174 |
-
plt.yticks(fontsize=12)
|
| 175 |
-
plt.show()
|
| 176 |
-
|
| 177 |
-
plot_classification_report_seaborn_styled(y_test, y_pred)
|
| 178 |
-
|
| 179 |
import time
|
| 180 |
import subprocess
|
| 181 |
import pyshark
|
|
@@ -191,8 +13,8 @@ import requests
|
|
| 191 |
import gradio as gr
|
| 192 |
|
| 193 |
# Load the pre-trained model and feature names
|
| 194 |
-
model = joblib.load('
|
| 195 |
-
all_features = joblib.load('
|
| 196 |
|
| 197 |
# Modify the capture duration to a longer period
|
| 198 |
def capture_packets(url, capture_duration=30, capture_file="capture.pcap"):
|
|
@@ -352,36 +174,3 @@ iface = gr.Interface(
|
|
| 352 |
# Launch the interface
|
| 353 |
iface.launch(debug=True)
|
| 354 |
|
| 355 |
-
import matplotlib.pyplot as plt
|
| 356 |
-
import numpy as np
|
| 357 |
-
|
| 358 |
-
# Sample data extracted from captured packets
|
| 359 |
-
# These would come from the extracted packet features
|
| 360 |
-
tcp_counts = 20 # Number of TCP packets
|
| 361 |
-
udp_counts = 10 # Number of UDP packets
|
| 362 |
-
packet_sizes = [60, 150, 300, 450, 500, 700, 900, 1100, 1400, 1600] # Example packet sizes in bytes
|
| 363 |
-
timestamps = np.linspace(0, 30, len(packet_sizes)) # Sample timestamps over 30 seconds
|
| 364 |
-
|
| 365 |
-
# Create a new figure
|
| 366 |
-
plt.figure(figsize=(10, 6))
|
| 367 |
-
|
| 368 |
-
# Plot TCP and UDP packet counts in a bar chart
|
| 369 |
-
plt.subplot(2, 1, 1) # 2 rows, 1 column, first plot
|
| 370 |
-
plt.bar(['TCP', 'UDP'], [tcp_counts, udp_counts], color=['blue', 'orange'])
|
| 371 |
-
plt.title('TCP vs UDP Packet Counts')
|
| 372 |
-
plt.xlabel('Protocol')
|
| 373 |
-
plt.ylabel('Packet Count')
|
| 374 |
-
|
| 375 |
-
# Plot packet sizes over time
|
| 376 |
-
plt.subplot(2, 1, 2) # 2 rows, 1 column, second plot
|
| 377 |
-
plt.plot(timestamps, packet_sizes, marker='o', color='green')
|
| 378 |
-
plt.title('Packet Sizes over Time')
|
| 379 |
-
plt.xlabel('Time (s)')
|
| 380 |
-
plt.ylabel('Packet Size (bytes)')
|
| 381 |
-
|
| 382 |
-
# Adjust layout to prevent overlap
|
| 383 |
-
plt.tight_layout()
|
| 384 |
-
|
| 385 |
-
# Display the plots
|
| 386 |
-
plt.show()
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import time
|
| 2 |
import subprocess
|
| 3 |
import pyshark
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
# Load the pre-trained model and feature names
|
| 16 |
+
model = joblib.load('extratrees.pkl')
|
| 17 |
+
all_features = joblib.load('featurenames.pkl')
|
| 18 |
|
| 19 |
# Modify the capture duration to a longer period
|
| 20 |
def capture_packets(url, capture_duration=30, capture_file="capture.pcap"):
|
|
|
|
| 174 |
# Launch the interface
|
| 175 |
iface.launch(debug=True)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|