Spaces:
Sleeping
Sleeping
remove old files
Browse files- rag_app/embeddings.py +0 -46
- rag_app/guardrail.gbnf +0 -13
- rag_app/rag.py +0 -272
rag_app/embeddings.py
DELETED
|
@@ -1,46 +0,0 @@
|
|
| 1 |
-
from llama_cpp import Llama
|
| 2 |
-
from typing import Any, List
|
| 3 |
-
from llama_index.core.embeddings import BaseEmbedding
|
| 4 |
-
from llama_index.core.bridge.pydantic import PrivateAttr
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
class LlamaCppIndexEmbedding(BaseEmbedding):
|
| 8 |
-
_model: Llama = PrivateAttr()
|
| 9 |
-
|
| 10 |
-
def __init__(
|
| 11 |
-
self,
|
| 12 |
-
model_path: str = "models/bge-m3-Q4_K_M.gguf",
|
| 13 |
-
**kwargs: Any,
|
| 14 |
-
) -> None:
|
| 15 |
-
super().__init__(**kwargs)
|
| 16 |
-
self._model = Llama(model_path=model_path, embedding=True)
|
| 17 |
-
|
| 18 |
-
@classmethod
|
| 19 |
-
def class_name(cls) -> str:
|
| 20 |
-
return "llama-cpp-bge-m3-embeddings"
|
| 21 |
-
|
| 22 |
-
async def _aget_query_embedding(self, query: str) -> List[float]:
|
| 23 |
-
return self._get_query_embedding(query)
|
| 24 |
-
|
| 25 |
-
async def _aget_text_embedding(self, text: str) -> List[float]:
|
| 26 |
-
return self._get_text_embedding(text)
|
| 27 |
-
|
| 28 |
-
def _get_query_embedding(self, query: str) -> List[float]:
|
| 29 |
-
# Generate embedding using llama-cpp-python
|
| 30 |
-
response = self._model.create_embedding(input=query)
|
| 31 |
-
embedding = response['data'][0]['embedding']
|
| 32 |
-
return embedding
|
| 33 |
-
|
| 34 |
-
def _get_text_embedding(self, text: str) -> List[float]:
|
| 35 |
-
# Generate embedding for a single text
|
| 36 |
-
response = self._model.create_embedding(input=text)
|
| 37 |
-
embedding = response['data'][0]['embedding']
|
| 38 |
-
return embedding
|
| 39 |
-
|
| 40 |
-
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
|
| 41 |
-
# Generate embeddings for a list of texts
|
| 42 |
-
embeddings = []
|
| 43 |
-
for text in texts:
|
| 44 |
-
embedding = self._get_text_embedding(text)
|
| 45 |
-
embeddings.append(embedding)
|
| 46 |
-
return embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_app/guardrail.gbnf
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
root ::= (" "| "\n") grammar-models
|
| 2 |
-
grammar-models ::= category
|
| 3 |
-
category ::= "{" "\n" ws "\"flag\"" ":" ws category-flag "\n" ws "}"
|
| 4 |
-
category-flag ::= "\"safe\"" | "\"unsafe\""
|
| 5 |
-
boolean ::= "true" | "false"
|
| 6 |
-
null ::= "null"
|
| 7 |
-
string ::= "\"" (
|
| 8 |
-
[^"\\] |
|
| 9 |
-
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
| 10 |
-
)* "\"" ws
|
| 11 |
-
ws ::= ([ \t\n] ws)?
|
| 12 |
-
float ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
| 13 |
-
integer ::= [0-9]+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_app/rag.py
DELETED
|
@@ -1,272 +0,0 @@
|
|
| 1 |
-
# !pip install pdfplumber
|
| 2 |
-
# !pip install rank_bm25
|
| 3 |
-
# !pip install langchain
|
| 4 |
-
# pip install sentence_transformers
|
| 5 |
-
# conda install -c conda-forge faiss-cpu
|
| 6 |
-
|
| 7 |
-
import pdfplumber
|
| 8 |
-
import pandas as pd
|
| 9 |
-
import numpy as np
|
| 10 |
-
import re
|
| 11 |
-
import os
|
| 12 |
-
from ast import literal_eval
|
| 13 |
-
import faiss
|
| 14 |
-
from llama_cpp import Llama, LlamaGrammar
|
| 15 |
-
from rank_bm25 import BM25Okapi
|
| 16 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 17 |
-
from sentence_transformers import SentenceTransformer, util
|
| 18 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 19 |
-
import PyPDF2
|
| 20 |
-
|
| 21 |
-
embedding_model = SentenceTransformer("models/all-MiniLM-L6-v2/")
|
| 22 |
-
llm = Llama(model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
| 23 |
-
n_gpu_layers=-1, n_ctx=8000)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def extract_info_from_pdf(pdf_path):
|
| 27 |
-
"""
|
| 28 |
-
Extracts both paragraphs and tables from each PDF page using pdfplumber.
|
| 29 |
-
Returns a list of dictionaries with keys: "page_number", "paragraphs", "tables".
|
| 30 |
-
"""
|
| 31 |
-
document_data = []
|
| 32 |
-
with pdfplumber.open(pdf_path) as pdf:
|
| 33 |
-
for i, page in enumerate(pdf.pages, start=1):
|
| 34 |
-
page_data = {"page_number": i, "paragraphs": [], "tables": []}
|
| 35 |
-
text = page.extract_text()
|
| 36 |
-
if text:
|
| 37 |
-
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
|
| 38 |
-
page_data["paragraphs"] = paragraphs
|
| 39 |
-
tables = page.extract_tables()
|
| 40 |
-
dfs = []
|
| 41 |
-
for table in tables:
|
| 42 |
-
if len(table) > 1:
|
| 43 |
-
df = pd.DataFrame(table[1:], columns=table[0])
|
| 44 |
-
else:
|
| 45 |
-
df = pd.DataFrame(table)
|
| 46 |
-
dfs.append(df)
|
| 47 |
-
page_data["tables"] = dfs
|
| 48 |
-
document_data.append(page_data)
|
| 49 |
-
return document_data
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def extract_financial_tables_regex(text):
|
| 53 |
-
"""
|
| 54 |
-
Extracts financial table information using a regex pattern (basic extraction).
|
| 55 |
-
"""
|
| 56 |
-
pattern = re.compile(r"(Revenue from Operations.*?)\n\n", re.DOTALL)
|
| 57 |
-
matches = pattern.findall(text)
|
| 58 |
-
if matches:
|
| 59 |
-
data_lines = matches[0].split("\n")
|
| 60 |
-
structured_data = [line.split() for line in data_lines if line.strip()]
|
| 61 |
-
if len(structured_data) > 1:
|
| 62 |
-
df = pd.DataFrame(structured_data[1:], columns=structured_data[0])
|
| 63 |
-
return df
|
| 64 |
-
return pd.DataFrame()
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def clean_financial_data(df):
|
| 68 |
-
"""
|
| 69 |
-
Cleans the financial DataFrame by converting numerical columns.
|
| 70 |
-
"""
|
| 71 |
-
if df.empty:
|
| 72 |
-
return ""
|
| 73 |
-
for col in df.columns[1:]:
|
| 74 |
-
df[col] = df[col].replace({',': ''}, regex=True)
|
| 75 |
-
df[col] = pd.to_numeric(df[col], errors='coerce')
|
| 76 |
-
return df.to_string()
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def combine_extracted_info(document_data, financial_text_regex=""):
|
| 80 |
-
"""
|
| 81 |
-
Combines extracted paragraphs and tables (converted to strings) into a single text.
|
| 82 |
-
Optionally appends extra financial table text.
|
| 83 |
-
"""
|
| 84 |
-
text_segments = []
|
| 85 |
-
for page in document_data:
|
| 86 |
-
for paragraph in page["paragraphs"]:
|
| 87 |
-
text_segments.append(paragraph)
|
| 88 |
-
for table in page["tables"]:
|
| 89 |
-
text_segments.append(table.to_string(index=False))
|
| 90 |
-
if financial_text_regex:
|
| 91 |
-
text_segments.append(financial_text_regex)
|
| 92 |
-
return "\n".join(text_segments)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def extract_text_from_pdf_pypdf2(pdf_path):
|
| 96 |
-
text = ""
|
| 97 |
-
with open(pdf_path, "rb") as file:
|
| 98 |
-
reader = PyPDF2.PdfReader(file)
|
| 99 |
-
for page in reader.pages:
|
| 100 |
-
text += page.extract_text() + "\n"
|
| 101 |
-
return text
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
| 105 |
-
"""
|
| 106 |
-
Uses RecursiveCharacterTextSplitter to chunk text.
|
| 107 |
-
"""
|
| 108 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 109 |
-
chunks = text_splitter.split_text(text)
|
| 110 |
-
return chunks
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
def build_faiss_index(chunks, embedding_model):
|
| 114 |
-
chunk_embeddings = embedding_model.encode(chunks)
|
| 115 |
-
dimension = chunk_embeddings.shape[1]
|
| 116 |
-
index = faiss.IndexFlatL2(dimension)
|
| 117 |
-
index.add(np.array(chunk_embeddings))
|
| 118 |
-
return index, chunk_embeddings
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
def retrieve_basic(query, index, chunks, embedding_model, k=5):
|
| 122 |
-
query_embedding = embedding_model.encode([query])
|
| 123 |
-
distances, indices = index.search(np.array(query_embedding), k)
|
| 124 |
-
return [chunks[i] for i in indices[0]], distances[0]
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def retrieve_bm25(query, chunks, k=5):
|
| 128 |
-
tokenized_corpus = [chunk.lower().split() for chunk in chunks]
|
| 129 |
-
bm25_model = BM25Okapi(tokenized_corpus)
|
| 130 |
-
tokenized_query = query.lower().split()
|
| 131 |
-
scores = bm25_model.get_scores(tokenized_query)
|
| 132 |
-
top_indices = np.argsort(scores)[::-1][:k]
|
| 133 |
-
return [chunks[i] for i in top_indices], scores[top_indices]
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def retrieve_advanced_embedding(query, chunks, embedding_model, k=5):
|
| 137 |
-
chunk_embeddings = embedding_model.encode(chunks)
|
| 138 |
-
query_embedding = embedding_model.encode([query])
|
| 139 |
-
scores = cosine_similarity(np.array(query_embedding), np.array(chunk_embeddings))[0]
|
| 140 |
-
top_indices = np.argsort(scores)[::-1][:k]
|
| 141 |
-
return [chunks[i] for i in top_indices], scores[top_indices]
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def rerank_candidates(query, candidate_chunks, embedding_model):
|
| 145 |
-
"""
|
| 146 |
-
Re-ranks candidate chunks using cosine similarity with the query.
|
| 147 |
-
"""
|
| 148 |
-
candidate_embeddings = embedding_model.encode(candidate_chunks)
|
| 149 |
-
query_embedding = embedding_model.encode([query])
|
| 150 |
-
scores = cosine_similarity(np.array(query_embedding), np.array(candidate_embeddings))[0]
|
| 151 |
-
ranked_indices = np.argsort(scores)[::-1]
|
| 152 |
-
reranked_chunks = [candidate_chunks[i] for i in ranked_indices]
|
| 153 |
-
reranked_scores = scores[ranked_indices]
|
| 154 |
-
return reranked_chunks, reranked_scores
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def get_grammar() -> LlamaGrammar:
|
| 158 |
-
"""
|
| 159 |
-
|
| 160 |
-
:return:
|
| 161 |
-
"""
|
| 162 |
-
file_path = "rag_app/guardrail.gbnf"
|
| 163 |
-
with open(file_path, 'r') as handler:
|
| 164 |
-
content = handler.read()
|
| 165 |
-
return LlamaGrammar.from_string(content)
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
def answer_question(query, context=None, max_length=5000):
|
| 169 |
-
# guardrails logic
|
| 170 |
-
output = llm(f"""Is this a harmful query: \n Query: {query}. \n\n Answer in 'SAFE'/'UNSAFE'""",
|
| 171 |
-
max_tokens=1000, stop=[], echo=False)
|
| 172 |
-
tag = llm(f"Is this a harmful query. Content:\n {output['choices'][0]['text']} \n\n Answer in 'SAFE'/'UNSAFE'",
|
| 173 |
-
max_tokens=1000, stop=[], echo=False, grammar=get_grammar())
|
| 174 |
-
flag = literal_eval(tag['choices'][0]['text'])['flag']
|
| 175 |
-
|
| 176 |
-
if flag == 'unsafe':
|
| 177 |
-
return "This question has been categorized as harmful. I can't help with these types of queries."
|
| 178 |
-
|
| 179 |
-
if not context:
|
| 180 |
-
output = llm(
|
| 181 |
-
f"""You're a helpful assistant. Answer the user query's in a professional tone.
|
| 182 |
-
Query: \n {query}""",
|
| 183 |
-
max_tokens=200,
|
| 184 |
-
stop=[],
|
| 185 |
-
echo=False
|
| 186 |
-
)
|
| 187 |
-
return output['choices'][0]['text']
|
| 188 |
-
|
| 189 |
-
if not context.strip():
|
| 190 |
-
return "Insufficient context to generate an answer."
|
| 191 |
-
|
| 192 |
-
prompt = f"""Your tone should be of a finance new reporter who comes at 7 PM Prime time. Questions would be
|
| 193 |
-
regarding a company's financials. Under context you have the relevant snapshot of that query from the
|
| 194 |
-
annual report. All you need to do is synthesize your response to the question based on the content of
|
| 195 |
-
these document snapshots.
|
| 196 |
-
|
| 197 |
-
# Context:
|
| 198 |
-
{context}\n\n
|
| 199 |
-
# Question: {query}
|
| 200 |
-
\nAnswer:
|
| 201 |
-
"""
|
| 202 |
-
output = llm(
|
| 203 |
-
prompt,
|
| 204 |
-
max_tokens=max_length,
|
| 205 |
-
stop=[],
|
| 206 |
-
echo=False
|
| 207 |
-
)
|
| 208 |
-
return output['choices'][0]['text']
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
def extract_final_answer(pdf_files, query):
|
| 212 |
-
combined_text = ""
|
| 213 |
-
for pdf_path in pdf_files:
|
| 214 |
-
print("reading:", pdf_path)
|
| 215 |
-
document_data = extract_info_from_pdf(pdf_path)
|
| 216 |
-
print("document_data:", len(document_data))
|
| 217 |
-
|
| 218 |
-
basic_text = extract_text_from_pdf_pypdf2(pdf_path)
|
| 219 |
-
financial_df = extract_financial_tables_regex(basic_text)
|
| 220 |
-
cleaned_financial_text = clean_financial_data(financial_df)
|
| 221 |
-
|
| 222 |
-
combined_text = combined_text + "\n" + combine_extracted_info(document_data, cleaned_financial_text)
|
| 223 |
-
print("Combined text length:", len(combined_text))
|
| 224 |
-
|
| 225 |
-
chunks = chunk_text(combined_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 226 |
-
print(f"Total chunks created: {len(chunks)}")
|
| 227 |
-
|
| 228 |
-
faiss_index, _ = build_faiss_index(chunks, embedding_model)
|
| 229 |
-
basic_results, basic_distances = retrieve_basic(query, faiss_index, chunks, embedding_model, k=k)
|
| 230 |
-
print("\n--- Basic RAG Results (FAISS) ---\n\n\n")
|
| 231 |
-
for chunk, dist in zip(basic_results, basic_distances):
|
| 232 |
-
print(f"Distance: {dist:.4f}\n")
|
| 233 |
-
print(f"Chunk: {chunk}\n{'-' * 40}")
|
| 234 |
-
|
| 235 |
-
bm25_results, bm25_scores = retrieve_bm25(query, chunks, k=k)
|
| 236 |
-
adv_emb_results, adv_emb_scores = retrieve_advanced_embedding(query, chunks, embedding_model, k=k)
|
| 237 |
-
|
| 238 |
-
print("\n--- Advanced RAG BM25 Results ---")
|
| 239 |
-
for chunk, score in zip(bm25_results, bm25_scores):
|
| 240 |
-
print(f"BM25 Score: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
|
| 241 |
-
|
| 242 |
-
print("\n--- Advanced RAG Embedding Results ---")
|
| 243 |
-
for chunk, score in zip(adv_emb_results, adv_emb_scores):
|
| 244 |
-
print(f"Embedding Similarity: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
|
| 245 |
-
|
| 246 |
-
candidate_set = list(set(basic_results + bm25_results + adv_emb_results))
|
| 247 |
-
print(f"\nTotal unique candidate chunks: {len(candidate_set)}")
|
| 248 |
-
|
| 249 |
-
reranked_chunks, reranked_scores = rerank_candidates(query, candidate_set, embedding_model)
|
| 250 |
-
|
| 251 |
-
print("\n--- Re-ranked Candidate Chunks ---")
|
| 252 |
-
for chunk, score in zip(reranked_chunks, reranked_scores):
|
| 253 |
-
print(f"Re-ranked Score: {score:.4f}\nChunk: {chunk}\n{'-' * 40}")
|
| 254 |
-
|
| 255 |
-
top_context = "\n".join(reranked_chunks[:k])
|
| 256 |
-
final_answer = answer_question(query, top_context)
|
| 257 |
-
|
| 258 |
-
print("\n--- Final Answer ---")
|
| 259 |
-
print(final_answer)
|
| 260 |
-
return final_answer
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
# Define paths, query, and parameters
|
| 265 |
-
# pdf_path = "reliance-jio-infocomm-limited-annual-report-fy-2023-24.pdf" # Update with your file path
|
| 266 |
-
# query = "What is the company's net revenue last year?" # Example query
|
| 267 |
-
chunk_size = 500
|
| 268 |
-
chunk_overlap = 50
|
| 269 |
-
candiadate_to_retrieve = 10 # Number of candidates to retrieve
|
| 270 |
-
k = 2
|
| 271 |
-
|
| 272 |
-
# extract_final_answer([pdf_path],"hello world")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|