|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import scipy.ndimage |
|
|
import insightface |
|
|
import torch |
|
|
import scipy |
|
|
|
|
|
|
|
|
face_analyzer = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider']) |
|
|
face_analyzer.prepare(ctx_id=0) |
|
|
|
|
|
|
|
|
def image_grid(imgs, rows, cols): |
|
|
assert len(imgs) == rows*cols |
|
|
|
|
|
w, h = imgs[0].size |
|
|
grid = Image.new('RGB', size=(cols*w, rows*h)) |
|
|
grid_w, grid_h = grid.size |
|
|
|
|
|
for i, img in enumerate(imgs): |
|
|
grid.paste(img, box=(i%cols*w, i//cols*h)) |
|
|
return grid |
|
|
|
|
|
|
|
|
def get_generator(seed, device): |
|
|
|
|
|
if seed is not None: |
|
|
if isinstance(seed, list): |
|
|
generator = [ |
|
|
torch.Generator(device).manual_seed(seed_item) for seed_item in seed |
|
|
] |
|
|
else: |
|
|
generator = torch.Generator(device).manual_seed(seed) |
|
|
else: |
|
|
generator = None |
|
|
|
|
|
return generator |
|
|
|
|
|
def get_landmark_pil_insight(pil_image): |
|
|
"""Get 68 facial landmarks using InsightFace.""" |
|
|
img_np = np.array(pil_image.convert("RGB")) |
|
|
faces = face_analyzer.get(img_np) |
|
|
if not faces: |
|
|
return None |
|
|
landmarks = faces[0].kps |
|
|
|
|
|
if landmarks.shape[0] < 68: |
|
|
|
|
|
left_eye, right_eye, nose, left_mouth, right_mouth = landmarks |
|
|
|
|
|
return np.array([ |
|
|
left_eye, right_eye, nose, left_mouth, right_mouth |
|
|
]) |
|
|
return landmarks |
|
|
|
|
|
def align_face(pil_image): |
|
|
"""Align a face from a PIL.Image, returning an aligned PIL.Image of size 512x512.""" |
|
|
lm = get_landmark_pil_insight(pil_image) |
|
|
if lm is None or lm.shape[0] < 5: |
|
|
return pil_image |
|
|
|
|
|
eye_left, eye_right = lm[0], lm[1] |
|
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
|
eye_to_eye = eye_right - eye_left |
|
|
mouth_left, mouth_right = lm[3], lm[4] |
|
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
|
x /= np.hypot(*x) |
|
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
|
y = np.flipud(x) * [-1, 1] |
|
|
c = eye_avg + eye_to_mouth * 0.1 |
|
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
img = pil_image.convert("RGB") |
|
|
transform_size = 512 |
|
|
output_size = 512 |
|
|
enable_padding = True |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
|
if shrink > 1: |
|
|
rsize = (int(np.rint(img.size[0] / shrink)), int(np.rint(img.size[1] / shrink))) |
|
|
img = img.resize(rsize, Image.Resampling.LANCZOS) |
|
|
quad /= shrink |
|
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
|
crop = ( |
|
|
int(np.floor(min(quad[:, 0]))), |
|
|
int(np.floor(min(quad[:, 1]))), |
|
|
int(np.ceil(max(quad[:, 0]))), |
|
|
int(np.ceil(max(quad[:, 1]))) |
|
|
) |
|
|
crop = ( |
|
|
max(crop[0] - border, 0), |
|
|
max(crop[1] - border, 0), |
|
|
min(crop[2] + border, img.size[0]), |
|
|
min(crop[3] + border, img.size[1]) |
|
|
) |
|
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
|
img = img.crop(crop) |
|
|
quad -= crop[:2] |
|
|
|
|
|
pad = ( |
|
|
int(np.floor(min(quad[:, 0]))), |
|
|
int(np.floor(min(quad[:, 1]))), |
|
|
int(np.ceil(max(quad[:, 0]))), |
|
|
int(np.ceil(max(quad[:, 1]))) |
|
|
) |
|
|
pad = ( |
|
|
max(-pad[0] + border, 0), |
|
|
max(-pad[1] + border, 0), |
|
|
max(pad[2] - img.size[0] + border, 0), |
|
|
max(pad[3] - img.size[1] + border, 0) |
|
|
) |
|
|
if enable_padding and max(pad) > border - 4: |
|
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
|
h, w, _ = img.shape |
|
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
|
mask = np.maximum( |
|
|
1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), |
|
|
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]) |
|
|
) |
|
|
blur = qsize * 0.02 |
|
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
|
img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
|
quad += pad[:2] |
|
|
|
|
|
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR) |
|
|
if output_size < transform_size: |
|
|
img = img.resize((output_size, output_size), Image.Resampling.LANCZOS) |
|
|
|
|
|
return img |
|
|
|