|
|
|
|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
def my_scaled_dot_product_attention( |
|
|
query, |
|
|
key, |
|
|
value, |
|
|
attn_mask=None, |
|
|
dropout_p=0.0, |
|
|
is_causal=False, |
|
|
scale=None, |
|
|
special_token_weight=1.0, |
|
|
special_token_indices=None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Computes the scaled dot-product attention with additional control over specific tokens. |
|
|
|
|
|
This function is a re-implementation of the scaled dot-product attention mechanism, |
|
|
designed to return both the attention map and the output of the attention operation. |
|
|
It also provides additional control via a scalar that modifies the attention map |
|
|
for specific tokens. |
|
|
""" |
|
|
L, S = query.size(-2), key.size(-2) |
|
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale |
|
|
attn_bias = torch.zeros(L, S, dtype=query.dtype).cuda() |
|
|
if is_causal: |
|
|
assert attn_mask is None |
|
|
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) |
|
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) |
|
|
attn_bias.to(query.dtype) |
|
|
|
|
|
if attn_mask is not None: |
|
|
if attn_mask.dtype == torch.bool: |
|
|
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) |
|
|
else: |
|
|
attn_bias += attn_mask |
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor |
|
|
attn_weight += attn_bias |
|
|
if special_token_indices is not None and special_token_weight != 1.0: |
|
|
bs = attn_weight.shape[0] |
|
|
attn_weight[torch.arange(bs), :, :, special_token_indices] = torch.max( |
|
|
attn_weight[torch.arange(bs), :, :, special_token_indices], |
|
|
attn_weight[torch.arange(bs), :, :, special_token_indices] |
|
|
* special_token_weight, |
|
|
) |
|
|
|
|
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) |
|
|
return attn_weight @ value, attn_weight |
|
|
|
|
|
|
|
|
class AttnProcessor(torch.nn.Module): |
|
|
r""" |
|
|
Processor for implementing scaled dot-product attention. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size=None, |
|
|
cross_attention_dim=None, |
|
|
): |
|
|
super().__init__() |
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
|
raise ImportError( |
|
|
"AttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
|
) |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
qformer_tokens_out=None, |
|
|
special_token_indices=None, |
|
|
inference_mode=None, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
special_token_weight=None, |
|
|
): |
|
|
residual = hidden_states |
|
|
|
|
|
if attn.spatial_norm is not None: |
|
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
|
|
if input_ndim == 4: |
|
|
batch_size, channel, height, width = hidden_states.shape |
|
|
hidden_states = hidden_states.view( |
|
|
batch_size, channel, height * width |
|
|
).transpose(1, 2) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape |
|
|
if encoder_hidden_states is None |
|
|
else encoder_hidden_states.shape |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
attention_mask = attn.prepare_attention_mask( |
|
|
attention_mask, sequence_length, batch_size |
|
|
) |
|
|
|
|
|
|
|
|
attention_mask = attention_mask.view( |
|
|
batch_size, attn.heads, -1, attention_mask.shape[-1] |
|
|
) |
|
|
|
|
|
if attn.group_norm is not None: |
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
|
1, 2 |
|
|
) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states( |
|
|
encoder_hidden_states |
|
|
) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
inner_dim = key.shape[-1] |
|
|
head_dim = inner_dim // attn.heads |
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
|
batch_size, -1, attn.heads * head_dim |
|
|
) |
|
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
|
batch_size, channel, height, width |
|
|
) |
|
|
|
|
|
if attn.residual_connection: |
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class NestedAttnProcessor(torch.nn.Module): |
|
|
r""" |
|
|
Nested Attention processor for IP-Adapater for PyTorch 2.0. |
|
|
""" |
|
|
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, normalize_factor=1.0): |
|
|
super().__init__() |
|
|
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
|
raise ImportError( |
|
|
"NestedAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
|
) |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
|
|
self.normalize_factor = normalize_factor |
|
|
|
|
|
self.nested_to_k = nn.Linear( |
|
|
cross_attention_dim or hidden_size, hidden_size, bias=False |
|
|
) |
|
|
self.nested_to_v = nn.Linear( |
|
|
cross_attention_dim or hidden_size, hidden_size, bias=False |
|
|
) |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
qformer_tokens_out, |
|
|
special_token_indices, |
|
|
inference_mode=False, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
special_token_weight=1.0, |
|
|
): |
|
|
assert ( |
|
|
special_token_indices.shape[0] > 0 |
|
|
), "special_token_indices should not be empty" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
if attn.spatial_norm is not None: |
|
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
|
|
input_ndim = hidden_states.ndim |
|
|
bs = hidden_states.shape[0] |
|
|
|
|
|
if input_ndim == 4: |
|
|
bs, channel, height, width = hidden_states.shape |
|
|
hidden_states = hidden_states.view(bs, channel, height * width).transpose( |
|
|
1, 2 |
|
|
) |
|
|
|
|
|
bs, sequence_length, _ = ( |
|
|
hidden_states.shape |
|
|
if encoder_hidden_states is None |
|
|
else encoder_hidden_states.shape |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
attention_mask = attn.prepare_attention_mask( |
|
|
attention_mask, sequence_length, bs |
|
|
) |
|
|
|
|
|
|
|
|
attention_mask = attention_mask.view( |
|
|
bs, attn.heads, -1, attention_mask.shape[-1] |
|
|
) |
|
|
|
|
|
if attn.group_norm is not None: |
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
|
1, 2 |
|
|
) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
else: |
|
|
if attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states( |
|
|
encoder_hidden_states |
|
|
) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
inner_dim = key.shape[-1] |
|
|
head_dim = inner_dim // attn.heads |
|
|
|
|
|
query = query.view(bs, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
key = key.view(bs, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
value = value.view(bs, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
nested_key = self.nested_to_k(qformer_tokens_out) |
|
|
nested_value = self.nested_to_v(qformer_tokens_out) |
|
|
|
|
|
nested_key = nested_key.view(bs, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
nested_value = nested_value.view(bs, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
nested_hidden_states = F.scaled_dot_product_attention( |
|
|
query, |
|
|
nested_key, |
|
|
nested_value, |
|
|
attn_mask=None, |
|
|
dropout_p=0.0, |
|
|
is_causal=False, |
|
|
) |
|
|
|
|
|
|
|
|
textual_values_norms = torch.norm( |
|
|
value[torch.arange(bs), :, special_token_indices], dim=-1 |
|
|
) |
|
|
nested_hidden_states = ( |
|
|
torch.nn.functional.normalize(nested_hidden_states, p=2, dim=-1) |
|
|
* self.normalize_factor |
|
|
) |
|
|
nested_hidden_states = ( |
|
|
textual_values_norms.view(bs, -1, 1, 1) * nested_hidden_states |
|
|
) |
|
|
|
|
|
|
|
|
value_without_special_tokens = value.clone() |
|
|
if inference_mode: |
|
|
value_without_special_tokens[bs // 2 : bs, :, special_token_indices, :] = ( |
|
|
0.0 |
|
|
) |
|
|
else: |
|
|
value_without_special_tokens[ |
|
|
torch.arange(bs), :, special_token_indices, : |
|
|
] = 0.0 |
|
|
hidden_states_without_special_tokens, attn_weight = ( |
|
|
my_scaled_dot_product_attention( |
|
|
query, |
|
|
key, |
|
|
value_without_special_tokens, |
|
|
attn_mask=None, |
|
|
dropout_p=0.0, |
|
|
is_causal=False, |
|
|
special_token_weight=special_token_weight, |
|
|
special_token_indices=special_token_indices, |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
if inference_mode: |
|
|
special_token_attn_weight = attn_weight[ |
|
|
bs // 2 : bs, :, :, special_token_indices |
|
|
] |
|
|
else: |
|
|
special_token_attn_weight = attn_weight[ |
|
|
torch.arange(bs), :, :, special_token_indices |
|
|
] |
|
|
if inference_mode: |
|
|
special_token_weighted_values = ( |
|
|
special_token_attn_weight * nested_hidden_states[bs // 2 : bs] |
|
|
) |
|
|
else: |
|
|
special_token_weighted_values = ( |
|
|
special_token_attn_weight.unsqueeze(-1) * nested_hidden_states |
|
|
) |
|
|
if inference_mode: |
|
|
hidden_states = hidden_states_without_special_tokens |
|
|
hidden_states[bs // 2 : bs] += special_token_weighted_values |
|
|
else: |
|
|
hidden_states = ( |
|
|
hidden_states_without_special_tokens + special_token_weighted_values |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
|
bs, -1, attn.heads * head_dim |
|
|
) |
|
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
|
bs, channel, height, width |
|
|
) |
|
|
|
|
|
if attn.residual_connection: |
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
return hidden_states |
|
|
|