import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation MODEL_ID = "nvidia/segformer-b4-finetuned-cityscapes-1024-1024" processor = AutoImageProcessor.from_pretrained(MODEL_ID) model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) def city_palette(): return [ [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], ] labels_list = [] with open("labels.txt", "r", encoding="utf-8") as fp: for line in fp: labels_list.append(line.rstrip("\n")) colormap = np.asarray(city_palette(), dtype=np.uint8) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg_np): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') plt.title('Segmentation Result', fontsize=20, pad=20) LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg_np.astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) plt.title('Detected Classes', fontsize=20, pad=20) return fig def run_inference(input_img): # input: numpy array from gradio -> PIL img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img if img.mode != "RGB": img = img.convert("RGB") inputs = processor(images=img, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # resize to original upsampled = torch.nn.functional.interpolate( logits, size=img.size[::-1], mode="bilinear", align_corners=False ) seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # colorize & overlay color_seg = colormap[seg] pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) fig = draw_plot(pred_img, seg) return fig with gr.Blocks(theme=gr.themes.Soft(), title="도시 장면 분할") as demo: gr.Markdown( """ # 도시 장면 영상 분할 (City Scene Segmentation) **Cityscapes 데이터셋으로 학습된 SegFormer 모델**을 활용한 도로 및 도시 장면 분할 데모입니다. 도로, 건물, 차량, 보행자 등 19개 클래스를 자동으로 인식하고 분할합니다. """ ) gr.Markdown( """ --- ### 감지 가능한 클래스 (19개) `도로`, `보도`, `건물`, `벽`, `울타리`, `기둥`, `신호등`, `표지판`, `식물`, `지형`, `하늘`, `사람`, `자전거 탑승자`, `자동차`, `트럭`, `버스`, `기차`, `오토바이`, `자전거` """ ) with gr.Row(): with gr.Column(scale=1): input_img = gr.Image( type="numpy", label="입력 이미지", height=400 ) submit_btn = gr.Button( "분할 실행", variant="primary", size="lg" ) gr.Markdown("### 예시 이미지") gr.Examples( examples=[ "road-2.jpg", "road-3.jpeg", ], inputs=input_img, label="도시/도로 장면 샘플" ) with gr.Column(scale=1): output_plot = gr.Plot(label=" 분할 결과 및 범례") # 이벤트 핸들러 submit_btn.click( fn=run_inference, inputs=input_img, outputs=output_plot ) if __name__ == "__main__": demo.launch()