Gradio3 / app.py
ockkjs's picture
edit detail
487ebdb
raw
history blame
4.53 kB
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
MODEL_ID = "nvidia/segformer-b4-finetuned-cityscapes-1024-1024"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)
def city_palette():
return [
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153],
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152],
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32],
]
labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
for line in fp:
labels_list.append(line.rstrip("\n"))
colormap = np.asarray(city_palette(), dtype=np.uint8)
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg_np):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
plt.title('Segmentation Result', fontsize=20, pad=20)
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg_np.astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
plt.title('Detected Classes', fontsize=20, pad=20)
return fig
def run_inference(input_img):
# input: numpy array from gradio -> PIL
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
if img.mode != "RGB":
img = img.convert("RGB")
inputs = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# resize to original
upsampled = torch.nn.functional.interpolate(
logits, size=img.size[::-1], mode="bilinear", align_corners=False
)
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8)
# colorize & overlay
color_seg = colormap[seg]
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
with gr.Blocks(theme=gr.themes.Soft(), title="λ„μ‹œ μž₯λ©΄ λΆ„ν• ") as demo:
gr.Markdown(
"""
# λ„μ‹œ μž₯λ©΄ μ˜μƒ λΆ„ν•  (City Scene Segmentation)
**Cityscapes λ°μ΄ν„°μ…‹μœΌλ‘œ ν•™μŠ΅λœ SegFormer λͺ¨λΈ**을 ν™œμš©ν•œ λ„λ‘œ 및 λ„μ‹œ μž₯λ©΄ λΆ„ν•  데λͺ¨μž…λ‹ˆλ‹€.
λ„λ‘œ, 건물, μ°¨λŸ‰, λ³΄ν–‰μž λ“± 19개 클래슀λ₯Ό μžλ™μœΌλ‘œ μΈμ‹ν•˜κ³  λΆ„ν• ν•©λ‹ˆλ‹€.
"""
)
gr.Markdown(
"""
---
### 감지 κ°€λŠ₯ν•œ 클래슀 (19개)
`λ„λ‘œ`, `보도`, `건물`, `λ²½`, `μšΈνƒ€λ¦¬`, `κΈ°λ‘₯`, `μ‹ ν˜Έλ“±`, `ν‘œμ§€νŒ`, `식물`,
`μ§€ν˜•`, `ν•˜λŠ˜`, `μ‚¬λžŒ`, `μžμ „κ±° νƒ‘μŠΉμž`, `μžλ™μ°¨`, `트럭`, `λ²„μŠ€`, `κΈ°μ°¨`, `μ˜€ν† λ°”μ΄`, `μžμ „κ±°`
"""
)
with gr.Row():
with gr.Column(scale=1):
input_img = gr.Image(
type="numpy",
label="μž…λ ₯ 이미지",
height=400
)
submit_btn = gr.Button(
"λΆ„ν•  μ‹€ν–‰",
variant="primary",
size="lg"
)
gr.Markdown("### μ˜ˆμ‹œ 이미지")
gr.Examples(
examples=[
"road-2.jpg",
"road-3.jpeg",
],
inputs=input_img,
label="λ„μ‹œ/λ„λ‘œ μž₯λ©΄ μƒ˜ν”Œ"
)
with gr.Column(scale=1):
output_plot = gr.Plot(label=" λΆ„ν•  κ²°κ³Ό 및 λ²”λ‘€")
# 이벀트 ν•Έλ“€λŸ¬
submit_btn.click(
fn=run_inference,
inputs=input_img,
outputs=output_plot
)
if __name__ == "__main__":
demo.launch()