taronaeo commited on
Commit
6dd510c
·
1 Parent(s): fd4c0e1

ggml : initial zDNN backend (llama/14975)

Browse files
ggml/src/ggml-zdnn/CMakeLists.txt ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ if (DEFINED ZDNN_ROOT)
2
+ message(STATUS "zdnn: using ZDNN_ROOT override: ${ZDNN_ROOT}")
3
+ set(ZDNN_HINT "${ZDNN_ROOT}")
4
+ else()
5
+ set(ZDNN_HINT "")
6
+ endif()
7
+
8
+ find_path(ZDNN_INCLUDE
9
+ NAMES zdnn.h
10
+ HINTS ${ZDNN_HINT} /usr /usr/local
11
+ PATH_SUFFIXES include)
12
+ if (ZDNN_INCLUDE)
13
+ message(STATUS "zdnn: found include: ${ZDNN_INCLUDE}")
14
+ else()
15
+ message(FATAL_ERROR "zdnn: include directory not found, please set ZDNN_ROOT to the proper path if necessary")
16
+ endif()
17
+
18
+ find_library(ZDNN_LIB
19
+ NAMES zdnn
20
+ HINTS ${ZDNN_HINT} /usr /usr/local
21
+ PATH_SUFFIXES lib lib64)
22
+ if (ZDNN_LIB)
23
+ message(STATUS "zdnn: found library: ${ZDNN_LIB}")
24
+ else()
25
+ message(FATAL_ERROR "zdnn: library not found, please set ZDNN_ROOT to the proper path if necessary")
26
+ endif()
27
+
28
+ file(GLOB GGML_SOURCES_ZDNN "*.c" "*.cpp")
29
+ file(GLOB GGML_HEADERS_ZDNN "*.h" "*.hpp")
30
+
31
+ ggml_add_backend_library(ggml-zdnn ${GGML_HEADERS_ZDNN} ${GGML_SOURCES_ZDNN})
32
+ target_link_libraries(ggml-zdnn PRIVATE ${ZDNN_LIB})
33
+ target_include_directories(ggml-zdnn PRIVATE ${ZDNN_INCLUDE})
34
+ target_link_directories(ggml-zdnn PRIVATE ${ZDNN_LIB})
35
+
36
+ target_compile_definitions(ggml-zdnn PRIVATE GGML_USE_ZDNN)
ggml/src/ggml-zdnn/ggml-zdnn-impl.h ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifndef GGML_ZDNN_IMPL
2
+ #define GGML_ZDNN_IMPL
3
+
4
+ #include "zdnn.h"
5
+ #include "ggml.h"
6
+ #include "ggml-zdnn.h"
7
+
8
+ #include <vector>
9
+ #include <memory>
10
+ #include <vecintrin.h>
11
+
12
+ #define GGML_ZDNN_NAME "zDNN"
13
+ #define GGML_ZDNN_VERSION ZDNN_VERNUM
14
+
15
+ #define vec_neg(a) (-(a)) // Vector Negate
16
+ #define vec_add(a, b) ((a) + (b)) // Vector Add
17
+ #define vec_sub(a, b) ((a) - (b)) // Vector Subtract
18
+ #define vec_mul(a, b) ((a) * (b)) // Vector Multiply
19
+ #define vec_div(a, b) ((a) / (b)) // Vector Divide
20
+ #define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
21
+ #define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right
22
+ #define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic
23
+ #define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
24
+ #define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet
25
+
26
+ #ifndef vec_and
27
+ #define vec_and(a, b) ((a) & (b)) // Vector AND
28
+ #endif
29
+
30
+ #ifndef vec_or
31
+ #define vec_or(a, b) ((a) | (b)) // Vector OR
32
+ #endif
33
+
34
+ #ifndef vec_xor
35
+ #define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
36
+ #endif
37
+
38
+ typedef signed char char8x16_t __attribute__((vector_size(16)));
39
+ typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
40
+
41
+ typedef int8_t int8x16_t __attribute__((vector_size(16)));
42
+ typedef int16_t int16x8_t __attribute__((vector_size(16)));
43
+ typedef int32_t int32x4_t __attribute__((vector_size(16)));
44
+ typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
45
+ typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
46
+ typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
47
+
48
+ typedef float float32x4_t __attribute__((vector_size(16)));
49
+ typedef double double64x2_t __attribute__((vector_size(16)));
50
+
51
+ typedef signed long long long64x2_t __attribute__((vector_size(16)));
52
+ typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
53
+
54
+ #define ZDNN_CHECK(stmt) \
55
+ do { \
56
+ zdnn_status status = (stmt); \
57
+ GGML_ASSERT(status == ZDNN_OK); \
58
+ } while (0);
59
+
60
+ struct ggml_backend_zdnn_device_context {
61
+ int zdnn_device;
62
+ int zdnn_device_ref_count;
63
+
64
+ bool has_parmblkformat_0;
65
+ bool has_parmblkformat_1;
66
+
67
+ size_t max_size;
68
+
69
+ char name[128];
70
+ };
71
+
72
+ struct ggml_backend_zdnn_context {
73
+ int device;
74
+ ggml_cgraph * gf;
75
+ };
76
+
77
+ struct ggml_backend_zdnn_buffer {
78
+ void * data;
79
+ size_t size;
80
+
81
+ zdnn_tensor_desc pre_tfm_desc;
82
+ zdnn_tensor_desc tfm_desc;
83
+ zdnn_ztensor ztensor;
84
+
85
+ char name[GGML_MAX_NAME];
86
+ };
87
+
88
+ struct ggml_backend_zdnn_buffer_context {
89
+ void * all_data;
90
+ size_t all_size;
91
+ bool owned;
92
+
93
+ int n_buffers;
94
+ std::vector<std::unique_ptr<ggml_backend_zdnn_buffer>> buffers;
95
+ };
96
+
97
+ #endif // GGML_ZDNN_IMPL
ggml/src/ggml-zdnn/ggml-zdnn.cpp ADDED
@@ -0,0 +1,846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "zdnn.h"
2
+ #include "ggml-zdnn.h"
3
+ #include "ggml-zdnn-impl.h"
4
+
5
+ #include "ggml-impl.h"
6
+ #include "ggml-backend-impl.h"
7
+
8
+ #include <vector>
9
+ #include <memory>
10
+ #include <csignal>
11
+ #include <unistd.h>
12
+
13
+ inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) {
14
+ switch (type) {
15
+ case GGML_TYPE_F32:
16
+ return FP32;
17
+ case GGML_TYPE_F16:
18
+ return FP16;
19
+ case GGML_TYPE_BF16:
20
+ return BFLOAT;
21
+ case GGML_TYPE_I8:
22
+ return INT8;
23
+ case GGML_TYPE_I32:
24
+ return INT32;
25
+ case GGML_TYPE_Q8_0:
26
+ return INT8;
27
+ default:
28
+ GGML_ABORT("%s: fatal: unable to determine zTensor data type",
29
+ __func__);
30
+ break;
31
+ }
32
+ }
33
+
34
+ inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc,
35
+ zdnn_tensor_desc & tfm_desc,
36
+ zdnn_ztensor & ztensor,
37
+ const ggml_tensor * src,
38
+ const int64_t * ne,
39
+ const zdnn_data_layouts layout) {
40
+ zdnn_init_pre_transformed_desc(
41
+ layout,
42
+ ggml_zdnn_type_mapping(src->type),
43
+ &pre_tfm_desc,
44
+ ne[3], ne[2], ne[1], ne[0]
45
+ );
46
+
47
+ ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc));
48
+ ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor));
49
+ }
50
+
51
+ inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor,
52
+ void * buffer) {
53
+ ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer));
54
+ }
55
+
56
+ inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) {
57
+ switch (tensor->op) {
58
+ case GGML_OP_MUL_MAT:
59
+ {
60
+ zdnn_init_pre_transformed_desc(
61
+ ZDNN_2D,
62
+ ggml_zdnn_type_mapping(tensor->type),
63
+ &buffer->pre_tfm_desc,
64
+ tensor->ne[1], tensor->ne[0]
65
+ );
66
+ } break;
67
+
68
+ default:
69
+ {
70
+ // For 4D tensors, GGML uses NCHW layout. However, because zDNN
71
+ // automatically transforms everything to NHWC, we will use it
72
+ // directly to avoid the performance penalty changing the
73
+ // layout and reshaping the tensor.
74
+ zdnn_init_pre_transformed_desc(
75
+ ZDNN_NHWC,
76
+ ggml_zdnn_type_mapping(tensor->type),
77
+ &buffer->pre_tfm_desc,
78
+ tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
79
+ );
80
+
81
+ // TODO: Consider adding a ggml check.
82
+ // TODO: If tensor = 4D, use ZDNN_NCHW by default.
83
+ // TODO: If tensor = 2D, use ZDNN_NHWC by default.
84
+ } break;
85
+ }
86
+
87
+ ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
88
+ ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
89
+ }
90
+
91
+ static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
92
+ GGML_TENSOR_BINARY_OP_LOCALS;
93
+
94
+ const enum ggml_type type = src0->type;
95
+
96
+ GGML_ASSERT(ne0 == ne01);
97
+ GGML_ASSERT(ne1 == ne11);
98
+ GGML_ASSERT(ne2 == ne12);
99
+ GGML_ASSERT(ne3 == ne13);
100
+
101
+ // we don't support permuted src0 or src1
102
+ GGML_ASSERT(nb00 == ggml_type_size(type));
103
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
104
+
105
+ // dst cannot be transposed or permuted
106
+ GGML_ASSERT(nb0 == sizeof(float));
107
+ GGML_ASSERT(nb0 <= nb1);
108
+ GGML_ASSERT(nb1 <= nb2);
109
+ GGML_ASSERT(nb2 <= nb3);
110
+
111
+ const ggml_tensor * weights = src0;
112
+ const ggml_tensor * inputs = src1;
113
+ ggml_tensor * output = dst;
114
+
115
+ ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra;
116
+ ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra;
117
+ ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra;
118
+
119
+ zdnn_tensor_desc ptd_bias, td_bias;
120
+ zdnn_ztensor zt_bias;
121
+
122
+ const int64_t weights_rows = ne01;
123
+ const int64_t weights_cols = ne00;
124
+ const int64_t inputs_rows = ne11;
125
+ const int64_t inputs_cols = ne10;
126
+
127
+ assert(inputs_cols == weights_cols);
128
+
129
+ const int64_t output_rows = ne1;
130
+ const int64_t output_cols = ne0;
131
+
132
+ const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
133
+ ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D);
134
+
135
+ void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
136
+ if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data);
137
+ if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data);
138
+ ggml_zdnn_load_tensor(zt_bias, bias_data);
139
+
140
+ // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
141
+ // __func__, weights_extra->name,
142
+ // weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0],
143
+ // weights_extra->pre_tfm_desc.dim1,
144
+ // weights_extra->pre_tfm_desc.dim2,
145
+ // weights_extra->pre_tfm_desc.dim3,
146
+ // weights_extra->pre_tfm_desc.dim4);
147
+
148
+ // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
149
+ // __func__, inputs_extra->name,
150
+ // inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0],
151
+ // inputs_extra->pre_tfm_desc.dim1,
152
+ // inputs_extra->pre_tfm_desc.dim2,
153
+ // inputs_extra->pre_tfm_desc.dim3,
154
+ // inputs_extra->pre_tfm_desc.dim4);
155
+
156
+ GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]");
157
+ GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]");
158
+ GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]");
159
+ GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]");
160
+
161
+ ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias,
162
+ false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
163
+ // TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient.
164
+ ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data));
165
+
166
+ ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias));
167
+ free(bias_data);
168
+ }
169
+
170
+ static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
171
+ bool use_mul_mat_vec =
172
+ (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16)
173
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
174
+ && src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
175
+
176
+ bool use_mul_mat_vec_q =
177
+ ggml_is_quantized(src0->type)
178
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
179
+
180
+ bool use_mul_mat_q =
181
+ ggml_is_quantized(src0->type)
182
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
183
+
184
+ // debug helpers
185
+ // GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec);
186
+ // GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q);
187
+ // GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q);
188
+ // GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
189
+ // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
190
+ // GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
191
+ // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
192
+ // GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
193
+ // GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
194
+
195
+ if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16
196
+ && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)
197
+ && src1->ne[2] * src1->ne[3] > 1) {
198
+ // general KQ + KQV multi-batch
199
+ GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__);
200
+ // ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst);
201
+ } else if (use_mul_mat_vec) {
202
+ GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__);
203
+ // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr);
204
+ } else if (use_mul_mat_vec_q) {
205
+ GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__);
206
+ // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1);
207
+ } else if (use_mul_mat_q) {
208
+ GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__);
209
+ // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1);
210
+ } else {
211
+ // GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__);
212
+ ggml_zdnn_mul_mat_op(ctx, src0, src1, dst);
213
+ }
214
+ }
215
+
216
+ static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) {
217
+ switch (dst->op) {
218
+ case GGML_OP_MUL_MAT:
219
+ ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst);
220
+ break;
221
+
222
+ default:
223
+ return false;
224
+ }
225
+
226
+ return true;
227
+ }
228
+
229
+ static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) {
230
+ ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context;
231
+ ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context;
232
+
233
+ ctx->gf = gf;
234
+ for (int i = 0; i < gf->n_nodes; i++) {
235
+ ggml_tensor * node = gf->nodes[i];
236
+
237
+ if (ggml_is_empty(node)
238
+ || node->op == GGML_OP_NONE
239
+ || node->op == GGML_OP_RESHAPE
240
+ || node->op == GGML_OP_VIEW
241
+ || node->op == GGML_OP_PERMUTE
242
+ || node->op == GGML_OP_TRANSPOSE) {
243
+ continue;
244
+ }
245
+
246
+ bool ok = ggml_zdnn_compute_forward(ctx, node);
247
+ if (!ok) {
248
+ GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
249
+ __func__, node->name, ggml_op_name(node->op));
250
+ }
251
+
252
+ GGML_ASSERT(ok);
253
+ }
254
+
255
+ return GGML_STATUS_SUCCESS;
256
+ }
257
+
258
+ static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) {
259
+ switch (op->op) {
260
+ case GGML_OP_NONE:
261
+ case GGML_OP_RESHAPE:
262
+ case GGML_OP_VIEW:
263
+ case GGML_OP_TRANSPOSE:
264
+ case GGML_OP_PERMUTE:
265
+ return true;
266
+
267
+ case GGML_OP_MUL_MAT:
268
+ {
269
+ const ggml_tensor * src0 = op->src[0];
270
+ const ggml_tensor * src1 = op->src[1];
271
+
272
+ const int64_t ne10 = src1->ne[0];
273
+ const int64_t ne0 = op->ne[0];
274
+ const int64_t ne1 = op->ne[1];
275
+
276
+ const int64_t max_batch = ctx_dev->max_size;
277
+
278
+ return ggml_is_matrix(src0) &&
279
+ ggml_is_matrix(src1) &&
280
+ ggml_is_contiguous(src0) &&
281
+ ggml_is_contiguous(src1) &&
282
+ src0->view_src == nullptr && src1->view_src == nullptr &&
283
+ src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
284
+ (ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch);
285
+ } break;
286
+
287
+ default:
288
+ return false;
289
+ }
290
+ }
291
+
292
+ ////////////////////////////////////////////////////////////////////////////////
293
+
294
+ //
295
+ // globals
296
+ //
297
+
298
+ // initialised in ggml_backend_zdnn_reg
299
+ static ggml_backend_reg g_ggml_backend_zdnn_reg;
300
+ static ggml_backend_device g_ggml_backend_zdnn_device;
301
+
302
+ static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = {
303
+ /* .zdnn_device = */ 0,
304
+ /* .zdnn_device_ref_count = */ 0,
305
+ /* .has_parmblkformat_0 = */ false,
306
+ /* .has_parmblkformat_1 = */ false,
307
+ /* .max_size = */ 0,
308
+ /* .name = */ "",
309
+ };
310
+
311
+ static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) {
312
+ assert(ctx != NULL);
313
+
314
+ if (ctx->zdnn_device == 0) {
315
+ ctx->zdnn_device = 1;
316
+ }
317
+
318
+ if (ctx->zdnn_device >= 1) {
319
+ ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0);
320
+ ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1);
321
+ ctx->max_size = zdnn_get_nnpa_max_dim_idx_size();
322
+ strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
323
+ }
324
+
325
+ ctx->zdnn_device_ref_count++;
326
+ return ctx->zdnn_device;
327
+ }
328
+
329
+ static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) {
330
+ assert(ctx != NULL);
331
+ assert(ctx->zdnn_device_ref_count > 0);
332
+
333
+ ctx->zdnn_device_ref_count--;
334
+ if (ctx->zdnn_device_ref_count == 0) {
335
+ if (ctx->zdnn_device >= 0) {
336
+ ctx->zdnn_device = 0;
337
+ }
338
+ }
339
+ }
340
+
341
+ static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
342
+ GGML_LOG_INFO("%s: allocating\n", __func__);
343
+ GGML_LOG_INFO("%s: found 1 device\n", __func__);
344
+
345
+ #ifdef STATIC_LIB
346
+ zdnn_init();
347
+ #endif
348
+
349
+ ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context();
350
+ ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
351
+
352
+ int device = 1;
353
+ GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name);
354
+
355
+ ctx->device = device;
356
+ GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name);
357
+ GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false");
358
+ GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false");
359
+
360
+ ctx->gf = nullptr;
361
+
362
+ return ctx;
363
+ }
364
+
365
+ static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) {
366
+ GGML_LOG_INFO("%s: deallocating\n", __func__);
367
+ delete ctx;
368
+ }
369
+
370
+ //
371
+ // backend interface
372
+ //
373
+
374
+ static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
375
+ ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
376
+
377
+ for (int i = 0; i < ctx->n_buffers; i++) {
378
+ if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) {
379
+ ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor));
380
+ }
381
+ }
382
+
383
+ delete ctx;
384
+ }
385
+
386
+ static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
387
+ ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
388
+ return ctx->all_data;
389
+ }
390
+
391
+ static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
392
+ if (tensor->view_src != NULL) {
393
+ assert(tensor->view_src->buffer->buft == buffer->buft);
394
+ return GGML_STATUS_SUCCESS;
395
+ }
396
+
397
+ ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
398
+
399
+ const int64_t tsize = ggml_nbytes(tensor);
400
+ int buffer_idx = ctx->n_buffers;
401
+
402
+ std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
403
+ zdnn_buffer->data = tensor->data;
404
+ zdnn_buffer->size = tsize;
405
+ strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1);
406
+
407
+ ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor);
408
+ tensor->extra = zdnn_buffer.get();
409
+
410
+ ctx->buffers.push_back(std::move(zdnn_buffer));
411
+ ctx->n_buffers++;
412
+
413
+ // GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n",
414
+ // __func__, tensor->name, buffer_idx, tsize);
415
+
416
+ return GGML_STATUS_SUCCESS;
417
+ }
418
+
419
+ static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
420
+ memset((char *)tensor->data + offset, value, size);
421
+
422
+ GGML_UNUSED(buffer);
423
+ }
424
+
425
+ static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
426
+ memcpy((char *)tensor->data + offset, data, size);
427
+
428
+ GGML_UNUSED(buffer);
429
+ }
430
+
431
+ static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
432
+ memcpy(data, (const char *)tensor->data + offset, size);
433
+
434
+ GGML_UNUSED(buffer);
435
+ }
436
+
437
+ static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
438
+ ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
439
+
440
+ memset(ctx->all_data, value, ctx->all_size);
441
+ }
442
+
443
+ static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
444
+ /* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer,
445
+ /* .get_base = */ ggml_backend_zdnn_buffer_get_base,
446
+ /* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
447
+ /* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
448
+ /* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
449
+ /* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
450
+ /* .cpy_tensor = */ NULL,
451
+ /* .clear = */ ggml_backend_zdnn_buffer_clear,
452
+ /* .reset = */ NULL,
453
+ };
454
+
455
+ //
456
+ // default buffer type
457
+ //
458
+
459
+ static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
460
+ return GGML_ZDNN_NAME;
461
+
462
+ GGML_UNUSED(buft);
463
+ }
464
+
465
+ static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
466
+ ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
467
+
468
+ const size_t size_page = sysconf(_SC_PAGESIZE);
469
+
470
+ size_t size_aligned = size;
471
+ if ((size_aligned % size_page) != 0) {
472
+ size_aligned += size_page - (size_aligned % size_page);
473
+ }
474
+
475
+ ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context;
476
+
477
+ GGML_ASSERT(ctx_dev->zdnn_device >= 0);
478
+ int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
479
+
480
+ ctx->all_data = ggml_aligned_malloc(size_aligned);
481
+ ctx->all_size = size_aligned;
482
+ ctx->owned = true;
483
+ ctx->n_buffers = 1;
484
+
485
+ if (ctx->all_data != NULL) {
486
+ std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
487
+ zdnn_buffer->data = ctx->all_data;
488
+ zdnn_buffer->size = size_aligned;
489
+ ctx->buffers.push_back(std::move(zdnn_buffer));
490
+ }
491
+
492
+ if (size_aligned > 0 && (ctx->all_data == NULL)) {
493
+ GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n",
494
+ __func__, size_aligned / 1024.0 / 1024.0);
495
+ delete ctx;
496
+ return NULL;
497
+ }
498
+
499
+ return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
500
+ }
501
+
502
+ static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
503
+ return 256;
504
+
505
+ GGML_UNUSED(buft);
506
+ }
507
+
508
+ static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
509
+ return true;
510
+
511
+ GGML_UNUSED(buft);
512
+ }
513
+
514
+ ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
515
+ static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
516
+ /* .iface = */ {
517
+ /* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
518
+ /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
519
+ /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
520
+ /* .get_max_size = */ NULL,
521
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
522
+ /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
523
+ },
524
+ /* .device = */ &g_ggml_backend_zdnn_device,
525
+ /* .context = */ NULL,
526
+ };
527
+
528
+ return &ggml_backend_buffer_type_zdnn;
529
+ }
530
+
531
+ static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
532
+ return GGML_ZDNN_NAME "_Mapped";
533
+
534
+ GGML_UNUSED(buft);
535
+ }
536
+
537
+ static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
538
+ static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
539
+ /* .iface = */ {
540
+ /* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
541
+ /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
542
+ /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
543
+ /* .get_max_size = */ NULL,
544
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
545
+ /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
546
+ },
547
+ /* .device = */ &g_ggml_backend_zdnn_device,
548
+ /* .context = */ NULL,
549
+ };
550
+
551
+ return &ggml_backend_buffer_from_ptr_type_zdnn;
552
+ }
553
+
554
+ //
555
+ // backend
556
+ //
557
+
558
+ static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
559
+ return GGML_ZDNN_NAME;
560
+
561
+ GGML_UNUSED(backend);
562
+ }
563
+
564
+ static void ggml_backend_zdnn_free(ggml_backend_t backend) {
565
+ ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;
566
+
567
+ ggml_zdnn_free(ctx);
568
+ free(backend);
569
+ }
570
+
571
+ static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
572
+ return ggml_zdnn_graph_compute(backend, cgraph);
573
+ }
574
+
575
+ static ggml_backend_i ggml_backend_zdnn_i = {
576
+ /* .get_name = */ ggml_backend_zdnn_name,
577
+ /* .free = */ ggml_backend_zdnn_free,
578
+ /* .set_tensor_async = */ NULL,
579
+ /* .get_tensor_async = */ NULL,
580
+ /* .cpy_tensor_async = */ NULL,
581
+ /* .synchronize = */ NULL,
582
+ /* .graph_plan_create = */ NULL,
583
+ /* .graph_plan_free = */ NULL,
584
+ /* .graph_plan_update = */ NULL,
585
+ /* .graph_plan_compute = */ NULL,
586
+ /* .graph_compute = */ ggml_backend_zdnn_graph_compute,
587
+ /* .event_record = */ NULL,
588
+ /* .event_wait = */ NULL,
589
+ };
590
+
591
+ static ggml_guid_t ggml_backend_zdnn_guid(void) {
592
+ static const char * guid_str = "IBM-ZDNN-ACCELER";
593
+ return reinterpret_cast<ggml_guid_t>((void *)guid_str);
594
+ }
595
+
596
+ // TODO: remove in the future
597
+ ggml_backend_t ggml_backend_zdnn_init(void) {
598
+ ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);
599
+
600
+ ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
601
+ if (ctx == NULL) {
602
+ GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
603
+ return NULL;
604
+ }
605
+
606
+ ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend));
607
+ *backend = (ggml_backend) {
608
+ /* .guid = */ ggml_backend_zdnn_guid(),
609
+ /* .iface = */ ggml_backend_zdnn_i,
610
+ /* .device = */ dev,
611
+ /* .context = */ ctx,
612
+ };
613
+
614
+ return backend;
615
+ }
616
+
617
+ bool ggml_backend_is_zdnn(ggml_backend_t backend) {
618
+ return backend != NULL &&
619
+ ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
620
+
621
+ GGML_UNUSED(backend);
622
+ }
623
+
624
+ //
625
+ // backend device
626
+ //
627
+
628
+ static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
629
+ return GGML_ZDNN_NAME;
630
+
631
+ GGML_UNUSED(dev);
632
+ }
633
+
634
+ static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
635
+ return "IBM Z Neural Network Processing Assist (NNPA)";
636
+ }
637
+
638
+ static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
639
+ *free = 0;
640
+ *total = 0;
641
+ }
642
+
643
+ static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
644
+ return GGML_BACKEND_DEVICE_TYPE_ACCEL;
645
+
646
+ GGML_UNUSED(dev);
647
+ }
648
+
649
+ static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
650
+ props->name = ggml_backend_zdnn_device_get_name(dev);
651
+ props->description = ggml_backend_zdnn_device_get_description(dev);
652
+ props->type = ggml_backend_zdnn_device_get_type(dev);
653
+ ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
654
+ props->caps = (ggml_backend_dev_caps) {
655
+ /* .async = */ false,
656
+ /* .host_buffer = */ false,
657
+ /* .buffer_from_host_ptr = */ true,
658
+ /* .events = */ false,
659
+ };
660
+ }
661
+
662
+ static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
663
+ ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
664
+ if (ctx == NULL) {
665
+ GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
666
+ return NULL;
667
+ }
668
+
669
+ ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend));
670
+ *backend = (ggml_backend) {
671
+ /* .guid = */ ggml_backend_zdnn_guid(),
672
+ /* .iface = */ ggml_backend_zdnn_i,
673
+ /* .device = */ dev,
674
+ /* .context = */ ctx,
675
+ };
676
+
677
+ return backend;
678
+
679
+ GGML_UNUSED(params);
680
+ }
681
+
682
+ static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
683
+ return ggml_backend_zdnn_buffer_type();
684
+
685
+ GGML_UNUSED(dev);
686
+ }
687
+
688
+ static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
689
+ ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
690
+
691
+ ctx->all_data = ptr;
692
+ ctx->all_size = size;
693
+ ctx->owned = false;
694
+ ctx->n_buffers = 0;
695
+
696
+ const size_t size_page = sysconf(_SC_PAGESIZE);
697
+
698
+ // page-align the data ptr
699
+ {
700
+ const uintptr_t offs = (uintptr_t) ptr % size_page;
701
+ ptr = (void *)((char *)ptr - offs);
702
+ size += offs;
703
+ }
704
+
705
+ size_t size_aligned = size;
706
+ if ((size_aligned % size_page) != 0) {
707
+ size_aligned += size_page - (size_aligned % size_page);
708
+ }
709
+
710
+ ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
711
+
712
+ GGML_ASSERT(ctx_dev->zdnn_device >= 0);
713
+ int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
714
+
715
+ std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
716
+ zdnn_buffer->data = ptr;
717
+ zdnn_buffer->size = size;
718
+ ctx->buffers.push_back(std::move(zdnn_buffer));
719
+
720
+ GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
721
+ __func__, size_aligned / 1024.0 / 1024.0);
722
+
723
+ ++ctx->n_buffers;
724
+
725
+ return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
726
+ }
727
+
728
+ static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
729
+ ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context;
730
+
731
+ return ggml_zdnn_supports_op(ctx_dev, op);
732
+ }
733
+
734
+ static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
735
+ return
736
+ buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
737
+ buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;
738
+
739
+ GGML_UNUSED(dev);
740
+ }
741
+
742
+ static ggml_backend_device_i ggml_backend_zdnn_device_i = {
743
+ /* .get_name = */ ggml_backend_zdnn_device_get_name,
744
+ /* .get_description = */ ggml_backend_zdnn_device_get_description,
745
+ /* .get_memory = */ ggml_backend_zdnn_device_get_memory,
746
+ /* .get_type = */ ggml_backend_zdnn_device_get_type,
747
+ /* .get_props = */ ggml_backend_zdnn_device_get_props,
748
+ /* .init_backend = */ ggml_backend_zdnn_device_init,
749
+ /* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
750
+ /* .get_host_buffer_type = */ NULL,
751
+ /* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
752
+ /* .supports_op = */ ggml_backend_zdnn_device_supports_op,
753
+ /* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
754
+ /* .offload_op = */ NULL,
755
+ /* .event_new = */ NULL,
756
+ /* .event_free = */ NULL,
757
+ /* .event_synchronize = */ NULL,
758
+ };
759
+
760
+ //
761
+ // backend registry
762
+ //
763
+
764
+ static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
765
+ return GGML_ZDNN_NAME;
766
+
767
+ GGML_UNUSED(reg);
768
+ }
769
+
770
+ static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
771
+ if (!zdnn_is_nnpa_installed()) {
772
+ return 0;
773
+ }
774
+ return 1;
775
+
776
+ GGML_UNUSED(reg);
777
+ }
778
+
779
+ static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
780
+ GGML_ASSERT(index == 0);
781
+
782
+ return &g_ggml_backend_zdnn_device;
783
+
784
+ GGML_UNUSED(reg);
785
+ GGML_UNUSED(index);
786
+ }
787
+
788
+ static ggml_backend_feature g_ggml_backend_zdnn_features[] = {
789
+ { "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" },
790
+ { "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" },
791
+ { "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" },
792
+ { NULL, NULL },
793
+ };
794
+
795
+ static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
796
+ return g_ggml_backend_zdnn_features;
797
+
798
+ GGML_UNUSED(reg);
799
+ }
800
+
801
+ static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
802
+ if (strcmp(name, "ggml_backend_get_features") == 0) {
803
+ return (void *) ggml_backend_zdnn_get_features;
804
+ }
805
+
806
+ return NULL;
807
+
808
+ GGML_UNUSED(reg);
809
+ }
810
+
811
+ static ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
812
+ /* .get_name = */ ggml_backend_zdnn_reg_get_name,
813
+ /* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
814
+ /* .get_device = */ ggml_backend_zdnn_reg_device_get,
815
+ /* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
816
+ };
817
+
818
+ static void ggml_zdnn_cleanup(void) {
819
+ ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
820
+ }
821
+
822
+ // TODO: make thread-safe
823
+ ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
824
+ ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);
825
+
826
+ // register cleanup callback
827
+ atexit(ggml_zdnn_cleanup);
828
+
829
+ {
830
+ g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
831
+ /* .api_version = */ GGML_ZDNN_VERSION,
832
+ /* .iface = */ ggml_backend_zdnn_reg_i,
833
+ /* .context = */ NULL,
834
+ };
835
+
836
+ g_ggml_backend_zdnn_device = (ggml_backend_device) {
837
+ /* .iface = */ ggml_backend_zdnn_device_i,
838
+ /* .reg = */ &g_ggml_backend_zdnn_reg,
839
+ /* .context = */ &g_ggml_ctx_dev_main,
840
+ };
841
+
842
+ return &g_ggml_backend_zdnn_reg;
843
+ }
844
+ }
845
+
846
+ GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)