Spaces:
Sleeping
Sleeping
whisper : auto-grow working areas for mel_calc_cuda (#2227)
Browse files* whisper : auto-grow working areas for mel_calc_cuda, fixes #2226
* whisper : only calculate mel spectrogram on GPU if audio is <= 5 min
- whisper-mel-cuda.cu +50 -26
- whisper-mel.hpp +1 -1
- whisper.cpp +19 -3
whisper-mel-cuda.cu
CHANGED
|
@@ -145,17 +145,6 @@ void calc_magnitudes(
|
|
| 145 |
|
| 146 |
constexpr auto LOG_MEL_PREFIX_SIZE = 256;
|
| 147 |
|
| 148 |
-
size_t get_log_mel_temp_storage_size() {
|
| 149 |
-
constexpr auto maxPaddedSamples = 2 * WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
| 150 |
-
constexpr auto maxFrames = 1 + (maxPaddedSamples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
| 151 |
-
constexpr auto maxMels = 160;
|
| 152 |
-
|
| 153 |
-
size_t nbytes = 0;
|
| 154 |
-
float * temp = nullptr;
|
| 155 |
-
cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, maxFrames * maxMels);
|
| 156 |
-
return nbytes + LOG_MEL_PREFIX_SIZE;
|
| 157 |
-
}
|
| 158 |
-
|
| 159 |
void calc_log_mel(
|
| 160 |
const float * mel_data,
|
| 161 |
int n_mel,
|
|
@@ -186,11 +175,14 @@ class mel_calc_cuda : public whisper_mel_calc {
|
|
| 186 |
|
| 187 |
float * m_hann_window = nullptr;
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
size_t m_cufft_workspace_size = 0;
|
| 190 |
void * m_cufft_workspace = nullptr;
|
| 191 |
|
| 192 |
-
float * m_filters = nullptr;
|
| 193 |
-
|
| 194 |
size_t m_log_mel_temp_storage_size = 0;
|
| 195 |
void * m_log_mel_temp_storage = nullptr;
|
| 196 |
public:
|
|
@@ -215,14 +207,6 @@ public:
|
|
| 215 |
CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
| 216 |
}
|
| 217 |
|
| 218 |
-
// create working area
|
| 219 |
-
{
|
| 220 |
-
constexpr auto maxPaddedSamples = 2 * WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
| 221 |
-
constexpr auto maxFrames = 1 + (maxPaddedSamples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
| 222 |
-
CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, maxFrames, &m_cufft_workspace_size));
|
| 223 |
-
CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream));
|
| 224 |
-
}
|
| 225 |
-
|
| 226 |
// fill filters
|
| 227 |
{
|
| 228 |
auto& f = filters.data;
|
|
@@ -230,10 +214,8 @@ public:
|
|
| 230 |
CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
| 231 |
}
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream));
|
| 236 |
-
}
|
| 237 |
}
|
| 238 |
|
| 239 |
~mel_calc_cuda() {
|
|
@@ -245,7 +227,49 @@ public:
|
|
| 245 |
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
| 246 |
}
|
| 247 |
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
const size_t mirror_pad = WHISPER_N_FFT / 2;
|
| 250 |
const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
| 251 |
|
|
|
|
| 145 |
|
| 146 |
constexpr auto LOG_MEL_PREFIX_SIZE = 256;
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
void calc_log_mel(
|
| 149 |
const float * mel_data,
|
| 150 |
int n_mel,
|
|
|
|
| 175 |
|
| 176 |
float * m_hann_window = nullptr;
|
| 177 |
|
| 178 |
+
float * m_filters = nullptr;
|
| 179 |
+
|
| 180 |
+
// max samples for which we have allocated memory for the temp working areas below (cufft, log_mel)
|
| 181 |
+
int m_n_max_samples = 0;
|
| 182 |
+
|
| 183 |
size_t m_cufft_workspace_size = 0;
|
| 184 |
void * m_cufft_workspace = nullptr;
|
| 185 |
|
|
|
|
|
|
|
| 186 |
size_t m_log_mel_temp_storage_size = 0;
|
| 187 |
void * m_log_mel_temp_storage = nullptr;
|
| 188 |
public:
|
|
|
|
| 207 |
CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
| 208 |
}
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
// fill filters
|
| 211 |
{
|
| 212 |
auto& f = filters.data;
|
|
|
|
| 214 |
CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
| 215 |
}
|
| 216 |
|
| 217 |
+
// preallocate working areas enough for the most common cases (<= 30s)
|
| 218 |
+
ensure_working_areas(WHISPER_N_SAMPLES);
|
|
|
|
|
|
|
| 219 |
}
|
| 220 |
|
| 221 |
~mel_calc_cuda() {
|
|
|
|
| 227 |
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
| 228 |
}
|
| 229 |
|
| 230 |
+
void ensure_working_areas(int n_samples) {
|
| 231 |
+
if (n_samples <= m_n_max_samples) {
|
| 232 |
+
return;
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
const auto max_padded_samples = n_samples + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
| 236 |
+
const auto max_frames = 1 + (max_padded_samples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
| 237 |
+
|
| 238 |
+
// cufft workspace
|
| 239 |
+
{
|
| 240 |
+
if (m_cufft_workspace) {
|
| 241 |
+
CUDA_CHECK(cudaFree(m_cufft_workspace));
|
| 242 |
+
m_cufft_workspace_size = 0;
|
| 243 |
+
m_cufft_workspace = nullptr;
|
| 244 |
+
}
|
| 245 |
+
CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, max_frames, &m_cufft_workspace_size));
|
| 246 |
+
CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream));
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
// device reduce working area
|
| 250 |
+
{
|
| 251 |
+
if (m_log_mel_temp_storage) {
|
| 252 |
+
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
| 253 |
+
m_log_mel_temp_storage_size = 0;
|
| 254 |
+
m_log_mel_temp_storage = nullptr;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
const auto max_mels = 160;
|
| 258 |
+
|
| 259 |
+
size_t nbytes = 0;
|
| 260 |
+
float* temp = nullptr;
|
| 261 |
+
cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, max_frames * max_mels);
|
| 262 |
+
m_log_mel_temp_storage_size = nbytes + LOG_MEL_PREFIX_SIZE;
|
| 263 |
+
|
| 264 |
+
CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream));
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
m_n_max_samples = n_samples;
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
virtual whisper_mel calculate(whisper_span<const float> samples, int /*n_threads*/) override {
|
| 271 |
+
ensure_working_areas(samples.len);
|
| 272 |
+
|
| 273 |
const size_t mirror_pad = WHISPER_N_FFT / 2;
|
| 274 |
const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
| 275 |
|
whisper-mel.hpp
CHANGED
|
@@ -29,6 +29,6 @@ struct whisper_span {
|
|
| 29 |
|
| 30 |
struct whisper_mel_calc {
|
| 31 |
virtual ~whisper_mel_calc();
|
| 32 |
-
virtual whisper_mel calculate(whisper_span<const float> samples, int n_threads)
|
| 33 |
static whisper_span<const float> hann_window();
|
| 34 |
};
|
|
|
|
| 29 |
|
| 30 |
struct whisper_mel_calc {
|
| 31 |
virtual ~whisper_mel_calc();
|
| 32 |
+
virtual whisper_mel calculate(whisper_span<const float> samples, int n_threads) = 0;
|
| 33 |
static whisper_span<const float> hann_window();
|
| 34 |
};
|
whisper.cpp
CHANGED
|
@@ -802,6 +802,7 @@ struct whisper_state {
|
|
| 802 |
|
| 803 |
whisper_mel mel;
|
| 804 |
whisper_mel_calc * mel_calc = nullptr;
|
|
|
|
| 805 |
|
| 806 |
whisper_batch batch;
|
| 807 |
|
|
@@ -3079,7 +3080,7 @@ struct mel_calc_cpu : public whisper_mel_calc {
|
|
| 3079 |
mel_calc_cpu(ggml_backend_t backend, const whisper_filters & filters) : m_backend(backend), m_filters(filters) {}
|
| 3080 |
|
| 3081 |
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
| 3082 |
-
whisper_mel calculate(whisper_span<const float> ssamples, int n_threads)
|
| 3083 |
// Hann window
|
| 3084 |
const float * hann = global_cache.hann_window;
|
| 3085 |
|
|
@@ -3721,6 +3722,8 @@ void whisper_free_state(struct whisper_state * state) {
|
|
| 3721 |
|
| 3722 |
delete state->mel_calc;
|
| 3723 |
state->mel_calc = nullptr;
|
|
|
|
|
|
|
| 3724 |
|
| 3725 |
#ifdef WHISPER_USE_COREML
|
| 3726 |
if (state->ctx_coreml != nullptr) {
|
|
@@ -3778,11 +3781,24 @@ void whisper_free_params(struct whisper_full_params * params) {
|
|
| 3778 |
}
|
| 3779 |
}
|
| 3780 |
|
| 3781 |
-
int whisper_pcm_to_mel_with_state(struct whisper_context *
|
| 3782 |
const int64_t t_start_us = ggml_time_us();
|
| 3783 |
|
| 3784 |
whisper_mel_free(state->mel);
|
| 3785 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3786 |
|
| 3787 |
state->t_mel_us += ggml_time_us() - t_start_us;
|
| 3788 |
|
|
|
|
| 802 |
|
| 803 |
whisper_mel mel;
|
| 804 |
whisper_mel_calc * mel_calc = nullptr;
|
| 805 |
+
whisper_mel_calc * mel_calc_fallback = nullptr;
|
| 806 |
|
| 807 |
whisper_batch batch;
|
| 808 |
|
|
|
|
| 3080 |
mel_calc_cpu(ggml_backend_t backend, const whisper_filters & filters) : m_backend(backend), m_filters(filters) {}
|
| 3081 |
|
| 3082 |
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
| 3083 |
+
whisper_mel calculate(whisper_span<const float> ssamples, int n_threads) override {
|
| 3084 |
// Hann window
|
| 3085 |
const float * hann = global_cache.hann_window;
|
| 3086 |
|
|
|
|
| 3722 |
|
| 3723 |
delete state->mel_calc;
|
| 3724 |
state->mel_calc = nullptr;
|
| 3725 |
+
delete state->mel_calc_fallback;
|
| 3726 |
+
state->mel_calc_fallback = nullptr;
|
| 3727 |
|
| 3728 |
#ifdef WHISPER_USE_COREML
|
| 3729 |
if (state->ctx_coreml != nullptr) {
|
|
|
|
| 3781 |
}
|
| 3782 |
}
|
| 3783 |
|
| 3784 |
+
int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
|
| 3785 |
const int64_t t_start_us = ggml_time_us();
|
| 3786 |
|
| 3787 |
whisper_mel_free(state->mel);
|
| 3788 |
+
if (n_samples <= 5 * 60 * WHISPER_SAMPLE_RATE) {
|
| 3789 |
+
// calculate mel spectrogram for lengths up to 5 minutes on the most optimal mel calculator
|
| 3790 |
+
state->mel = state->mel_calc->calculate({samples, n_samples}, n_threads);
|
| 3791 |
+
} else {
|
| 3792 |
+
// calcuate mel spectrogram for longer audios on the CPU
|
| 3793 |
+
// 1. gpu calculations may use hundreds of megabytes of memory for longer audios so we're being conservative
|
| 3794 |
+
// with our gpu demands
|
| 3795 |
+
// 2. the time to transcribe audios this long will be dominated by the decoding time, so the mel calculation
|
| 3796 |
+
// taking longer is not a major concern
|
| 3797 |
+
if (!state->mel_calc_fallback) {
|
| 3798 |
+
state->mel_calc_fallback = new mel_calc_cpu(state->backend, ctx->model.filters);
|
| 3799 |
+
}
|
| 3800 |
+
state->mel = state->mel_calc_fallback->calculate({samples, n_samples}, n_threads);
|
| 3801 |
+
}
|
| 3802 |
|
| 3803 |
state->t_mel_us += ggml_time_us() - t_start_us;
|
| 3804 |
|