slaren commited on
Commit
4b26445
·
1 Parent(s): d0120b1

move BLAS to a separate backend (cont) (llama/6210)

Browse files
Files changed (5) hide show
  1. examples/common.h +1 -1
  2. ggml-blas.cpp +363 -0
  3. ggml-blas.h +23 -0
  4. src/ggml-blas.cpp +363 -0
  5. src/ggml-blas.h +23 -0
examples/common.h CHANGED
@@ -21,7 +21,7 @@ struct gpt_params {
21
  int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
22
  int32_t n_predict = 200; // new tokens to predict
23
  int32_t n_parallel = 1; // number of parallel streams
24
- int32_t n_batch = 8; // batch size for prompt processing
25
  int32_t n_ctx = 2048; // context size (this is the KV cache max size)
26
  int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
27
 
 
21
  int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
22
  int32_t n_predict = 200; // new tokens to predict
23
  int32_t n_parallel = 1; // number of parallel streams
24
+ int32_t n_batch = 32; // batch size for prompt processing
25
  int32_t n_ctx = 2048; // context size (this is the KV cache max size)
26
  int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
27
 
ggml-blas.cpp ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "ggml-blas.h"
2
+ #include "ggml-backend-impl.h"
3
+
4
+ #include <future>
5
+ #include <vector>
6
+
7
+ #if defined(GGML_USE_ACCELERATE)
8
+ # include <Accelerate/Accelerate.h>
9
+ #elif defined(GGML_BLAS_USE_MKL)
10
+ # include <mkl.h>
11
+ #else
12
+ # include <cblas.h>
13
+ # ifdef BLIS_ENABLE_CBLAS
14
+ # include <blis.h>
15
+ # endif
16
+ #endif
17
+
18
+ struct ggml_backend_blas_context {
19
+ int n_threads = GGML_DEFAULT_N_THREADS;
20
+ std::unique_ptr<char[]> work_data;
21
+ size_t work_size = 0;
22
+ #ifndef GGML_USE_OPENMP
23
+ std::vector<std::future<void>> tasks;
24
+ #endif
25
+ };
26
+
27
+ // helper function to determine if it is better to use BLAS or not
28
+ // for large matrices, BLAS is faster
29
+ static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
30
+ const struct ggml_tensor * src0 = dst->src[0];
31
+ const struct ggml_tensor * src1 = dst->src[1];
32
+
33
+ const int64_t ne10 = src1->ne[0];
34
+
35
+ const int64_t ne0 = dst->ne[0];
36
+ const int64_t ne1 = dst->ne[1];
37
+
38
+ // TODO: find the optimal values for these
39
+ if (ggml_is_contiguous(src0) &&
40
+ ggml_is_contiguous(src1) &&
41
+ src1->type == GGML_TYPE_F32 &&
42
+ (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
43
+
44
+ /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
45
+ return true;
46
+ }
47
+
48
+ return false;
49
+ }
50
+
51
+ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
52
+ const struct ggml_tensor * src0 = dst->src[0];
53
+ const struct ggml_tensor * src1 = dst->src[1];
54
+
55
+ GGML_TENSOR_BINARY_OP_LOCALS
56
+
57
+ const enum ggml_type type = src0->type;
58
+
59
+ GGML_ASSERT(ne0 == ne01);
60
+ GGML_ASSERT(ne1 == ne11);
61
+ GGML_ASSERT(ne2 == ne12);
62
+ GGML_ASSERT(ne3 == ne13);
63
+
64
+ // we don't support permuted src0 or src1
65
+ GGML_ASSERT(nb00 == ggml_type_size(type));
66
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
67
+
68
+ // dst cannot be transposed or permuted
69
+ GGML_ASSERT(nb0 == sizeof(float));
70
+ GGML_ASSERT(nb0 <= nb1);
71
+ GGML_ASSERT(nb1 <= nb2);
72
+ GGML_ASSERT(nb2 <= nb3);
73
+
74
+ // broadcast factors
75
+ const int64_t r2 = ne12/ne02;
76
+ const int64_t r3 = ne13/ne03;
77
+
78
+ const int64_t ne_plane = ne01*ne00;
79
+ const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
80
+
81
+ if (ctx->work_size < desired_wsize) {
82
+ ctx->work_data.reset(new char[desired_wsize]);
83
+ ctx->work_size = desired_wsize;
84
+ }
85
+ void * wdata = ctx->work_data.get();
86
+
87
+ // convert src0 to float
88
+ if (type != GGML_TYPE_F32) {
89
+ ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
90
+ ggml_to_float_t const to_float = type_traits.to_float;
91
+
92
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
93
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
94
+ const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
95
+ float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
96
+
97
+ const int min_cols_per_thread = 4096;
98
+ const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
99
+ const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
100
+
101
+ #ifdef GGML_USE_OPENMP
102
+ #pragma omp parallel for num_threads(n_threads)
103
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
104
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
105
+ }
106
+ #else
107
+ for (int i = 1; i < n_threads; i++) {
108
+ const int64_t start = i*ne01/n_threads;
109
+ const int64_t end = (i + 1)*ne01/n_threads;
110
+ if (start < end) {
111
+ ctx->tasks.push_back(std::async(std::launch::async, [=]() {
112
+ for (int64_t i01 = start; i01 < end; i01++) {
113
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
114
+ }
115
+ }));
116
+ }
117
+ }
118
+ {
119
+ // reuse the current thread for the first task
120
+ const int64_t start = 0;
121
+ const int64_t end = ne01/n_threads;
122
+ for (int64_t i01 = start; i01 < end; i01++) {
123
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
124
+ }
125
+ }
126
+ #endif
127
+ }
128
+ }
129
+
130
+ #ifndef GGML_USE_OPENMP
131
+ // wait for all tasks to finish
132
+ for (auto & task : ctx->tasks) {
133
+ task.get();
134
+ }
135
+ ctx->tasks.clear();
136
+ #endif
137
+ }
138
+
139
+ #if defined(OPENBLAS_VERSION)
140
+ openblas_set_num_threads(ctx->n_threads);
141
+ #endif
142
+
143
+ #if defined(BLIS_ENABLE_CBLAS)
144
+ bli_thread_set_num_threads(ctx->n_threads);
145
+ #endif
146
+
147
+ for (int64_t i13 = 0; i13 < ne13; i13++) {
148
+ for (int64_t i12 = 0; i12 < ne12; i12++) {
149
+ const int64_t i03 = i13/r3;
150
+ const int64_t i02 = i12/r2;
151
+
152
+ const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
153
+ const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
154
+ float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
155
+
156
+ if (type != GGML_TYPE_F32) {
157
+ x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
158
+ }
159
+
160
+ cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
161
+ ne1, ne01, ne10,
162
+ 1.0f, y, ne10,
163
+ x, ne00,
164
+ 0.0f, d, ne01);
165
+ }
166
+ }
167
+ }
168
+
169
+ static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
170
+ const struct ggml_tensor * src0 = dst->src[0];
171
+ const struct ggml_tensor * src1 = dst->src[1];
172
+
173
+ GGML_TENSOR_BINARY_OP_LOCALS
174
+
175
+ GGML_ASSERT(ne0 == ne00);
176
+ GGML_ASSERT(ne1 == ne10);
177
+ GGML_ASSERT(ne2 == ne02);
178
+ GGML_ASSERT(ne02 == ne12);
179
+ GGML_ASSERT(ne3 == ne13);
180
+ GGML_ASSERT(ne03 == ne13);
181
+
182
+ // we don't support permuted src0 or src1
183
+ GGML_ASSERT(nb00 == sizeof(float));
184
+
185
+ // dst cannot be transposed or permuted
186
+ GGML_ASSERT(nb0 == sizeof(float));
187
+ // GGML_ASSERT(nb0 <= nb1);
188
+ // GGML_ASSERT(nb1 <= nb2);
189
+ // GGML_ASSERT(nb2 <= nb3);
190
+
191
+ // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
192
+ // src0: (k,n)
193
+ // src1: (k,m)
194
+ // dst: (m,n)
195
+ //
196
+ // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
197
+ // Also expressed as (major,minor)
198
+ // a: (m,k): so src1 transposed
199
+ // b: (k,n): so src0
200
+ // c: (m,n)
201
+ //
202
+ // However, if ggml_is_transposed(src1) is true, then
203
+ // src1->data already contains a transposed version, so sgemm mustn't
204
+ // transpose it further.
205
+
206
+ int n = src0->ne[0];
207
+ int k = src0->ne[1];
208
+ int m = src1->ne[0];
209
+
210
+ CBLAS_TRANSPOSE transposeA;
211
+ int lda;
212
+
213
+ if (!ggml_is_transposed(src1)) {
214
+ transposeA = CblasTrans;
215
+ lda = m;
216
+ } else {
217
+ transposeA = CblasNoTrans;
218
+ lda = k;
219
+ }
220
+
221
+ float * a = (float *) ((char *) src1->data);
222
+ float * b = (float *) ((char *) src0->data);
223
+ float * c = (float *) ((char *) dst->data);
224
+
225
+ cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
226
+
227
+ GGML_UNUSED(ctx);
228
+ }
229
+
230
+ // backend interface
231
+
232
+ GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
233
+ return "BLAS";
234
+
235
+ GGML_UNUSED(backend);
236
+ }
237
+
238
+ GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
239
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
240
+ delete ctx;
241
+ delete backend;
242
+ }
243
+
244
+ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
245
+ return ggml_backend_cpu_buffer_type();
246
+
247
+ GGML_UNUSED(backend);
248
+ }
249
+
250
+ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
251
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
252
+
253
+ for (int i = 0; i < cgraph->n_nodes; i++) {
254
+ struct ggml_tensor * node = cgraph->nodes[i];
255
+
256
+ switch (node->op) {
257
+ case GGML_OP_MUL_MAT:
258
+ ggml_backend_blas_mul_mat(ctx, node);
259
+ break;
260
+
261
+ case GGML_OP_OUT_PROD:
262
+ ggml_backend_blas_out_prod(ctx, node);
263
+ break;
264
+
265
+ case GGML_OP_NONE:
266
+ case GGML_OP_RESHAPE:
267
+ case GGML_OP_VIEW:
268
+ case GGML_OP_PERMUTE:
269
+ case GGML_OP_TRANSPOSE:
270
+ break;
271
+
272
+ default:
273
+ fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
274
+ GGML_ASSERT(false);
275
+ }
276
+ }
277
+
278
+ return GGML_STATUS_SUCCESS;
279
+
280
+ GGML_UNUSED(backend);
281
+ }
282
+
283
+ GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
284
+ const struct ggml_tensor * src0 = op->src[0];
285
+ const struct ggml_tensor * src1 = op->src[1];
286
+
287
+ return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
288
+ (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
289
+ op->src[1]->type == GGML_TYPE_F32 &&
290
+ ggml_is_matrix(src0) &&
291
+ ggml_is_matrix(src1) &&
292
+ ggml_is_contiguous(src0) &&
293
+ (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
294
+
295
+ GGML_UNUSED(backend);
296
+ }
297
+
298
+ GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
299
+ return ggml_backend_buft_is_host(buft);
300
+
301
+ GGML_UNUSED(backend);
302
+ }
303
+
304
+ static struct ggml_backend_i blas_backend_i = {
305
+ /* .get_name = */ ggml_backend_blas_name,
306
+ /* .free = */ ggml_backend_blas_free,
307
+ /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
308
+ /* .set_tensor_async = */ NULL,
309
+ /* .get_tensor_async = */ NULL,
310
+ /* .cpy_tensor_async = */ NULL,
311
+ /* .synchronize = */ NULL,
312
+ /* .graph_plan_create = */ NULL,
313
+ /* .graph_plan_free = */ NULL,
314
+ /* .graph_plan_update = */ NULL,
315
+ /* .graph_plan_compute = */ NULL,
316
+ /* .graph_compute = */ ggml_backend_blas_graph_compute,
317
+ /* .supports_op = */ ggml_backend_blas_supports_op,
318
+ /* .supports_buft = */ ggml_backend_blas_supports_buft,
319
+ /* .offload_op = */ NULL,
320
+ /* .event_new = */ NULL,
321
+ /* .event_free = */ NULL,
322
+ /* .event_record = */ NULL,
323
+ /* .event_wait = */ NULL,
324
+ /* .event_synchronize = */ NULL,
325
+ };
326
+
327
+ static ggml_guid_t ggml_backend_blas_guid(void) {
328
+ static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
329
+ return &guid;
330
+ }
331
+
332
+ ggml_backend_t ggml_backend_blas_init(void) {
333
+ ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
334
+
335
+ ggml_backend_t backend = new ggml_backend {
336
+ /* .guid = */ ggml_backend_blas_guid(),
337
+ /* .interface = */ blas_backend_i,
338
+ /* .context = */ ctx,
339
+ };
340
+
341
+ #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
342
+ if (openblas_get_parallel() != OPENBLAS_OPENMP) {
343
+ fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
344
+ }
345
+ #endif
346
+
347
+ #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
348
+ fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
349
+ #endif
350
+
351
+ return backend;
352
+ }
353
+
354
+ GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
355
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
356
+ }
357
+
358
+ void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
359
+ GGML_ASSERT(ggml_backend_is_blas(backend_blas));
360
+
361
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
362
+ ctx->n_threads = n_threads;
363
+ }
ggml-blas.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+ #include "ggml-backend.h"
5
+
6
+
7
+ #ifdef __cplusplus
8
+ extern "C" {
9
+ #endif
10
+
11
+ // backend API
12
+ GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
13
+
14
+ GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
15
+
16
+ // number of threads used for conversion to float
17
+ // for openblas and blis, this will also set the number of threads used for blas operations
18
+ GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
19
+
20
+
21
+ #ifdef __cplusplus
22
+ }
23
+ #endif
src/ggml-blas.cpp ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "ggml-blas.h"
2
+ #include "ggml-backend-impl.h"
3
+
4
+ #include <future>
5
+ #include <vector>
6
+
7
+ #if defined(GGML_USE_ACCELERATE)
8
+ # include <Accelerate/Accelerate.h>
9
+ #elif defined(GGML_BLAS_USE_MKL)
10
+ # include <mkl.h>
11
+ #else
12
+ # include <cblas.h>
13
+ # ifdef BLIS_ENABLE_CBLAS
14
+ # include <blis.h>
15
+ # endif
16
+ #endif
17
+
18
+ struct ggml_backend_blas_context {
19
+ int n_threads = GGML_DEFAULT_N_THREADS;
20
+ std::unique_ptr<char[]> work_data;
21
+ size_t work_size = 0;
22
+ #ifndef GGML_USE_OPENMP
23
+ std::vector<std::future<void>> tasks;
24
+ #endif
25
+ };
26
+
27
+ // helper function to determine if it is better to use BLAS or not
28
+ // for large matrices, BLAS is faster
29
+ static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
30
+ const struct ggml_tensor * src0 = dst->src[0];
31
+ const struct ggml_tensor * src1 = dst->src[1];
32
+
33
+ const int64_t ne10 = src1->ne[0];
34
+
35
+ const int64_t ne0 = dst->ne[0];
36
+ const int64_t ne1 = dst->ne[1];
37
+
38
+ // TODO: find the optimal values for these
39
+ if (ggml_is_contiguous(src0) &&
40
+ ggml_is_contiguous(src1) &&
41
+ src1->type == GGML_TYPE_F32 &&
42
+ (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
43
+
44
+ /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
45
+ return true;
46
+ }
47
+
48
+ return false;
49
+ }
50
+
51
+ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
52
+ const struct ggml_tensor * src0 = dst->src[0];
53
+ const struct ggml_tensor * src1 = dst->src[1];
54
+
55
+ GGML_TENSOR_BINARY_OP_LOCALS
56
+
57
+ const enum ggml_type type = src0->type;
58
+
59
+ GGML_ASSERT(ne0 == ne01);
60
+ GGML_ASSERT(ne1 == ne11);
61
+ GGML_ASSERT(ne2 == ne12);
62
+ GGML_ASSERT(ne3 == ne13);
63
+
64
+ // we don't support permuted src0 or src1
65
+ GGML_ASSERT(nb00 == ggml_type_size(type));
66
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
67
+
68
+ // dst cannot be transposed or permuted
69
+ GGML_ASSERT(nb0 == sizeof(float));
70
+ GGML_ASSERT(nb0 <= nb1);
71
+ GGML_ASSERT(nb1 <= nb2);
72
+ GGML_ASSERT(nb2 <= nb3);
73
+
74
+ // broadcast factors
75
+ const int64_t r2 = ne12/ne02;
76
+ const int64_t r3 = ne13/ne03;
77
+
78
+ const int64_t ne_plane = ne01*ne00;
79
+ const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
80
+
81
+ if (ctx->work_size < desired_wsize) {
82
+ ctx->work_data.reset(new char[desired_wsize]);
83
+ ctx->work_size = desired_wsize;
84
+ }
85
+ void * wdata = ctx->work_data.get();
86
+
87
+ // convert src0 to float
88
+ if (type != GGML_TYPE_F32) {
89
+ ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
90
+ ggml_to_float_t const to_float = type_traits.to_float;
91
+
92
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
93
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
94
+ const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
95
+ float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
96
+
97
+ const int min_cols_per_thread = 4096;
98
+ const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
99
+ const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
100
+
101
+ #ifdef GGML_USE_OPENMP
102
+ #pragma omp parallel for num_threads(n_threads)
103
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
104
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
105
+ }
106
+ #else
107
+ for (int i = 1; i < n_threads; i++) {
108
+ const int64_t start = i*ne01/n_threads;
109
+ const int64_t end = (i + 1)*ne01/n_threads;
110
+ if (start < end) {
111
+ ctx->tasks.push_back(std::async(std::launch::async, [=]() {
112
+ for (int64_t i01 = start; i01 < end; i01++) {
113
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
114
+ }
115
+ }));
116
+ }
117
+ }
118
+ {
119
+ // reuse the current thread for the first task
120
+ const int64_t start = 0;
121
+ const int64_t end = ne01/n_threads;
122
+ for (int64_t i01 = start; i01 < end; i01++) {
123
+ to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
124
+ }
125
+ }
126
+ #endif
127
+ }
128
+ }
129
+
130
+ #ifndef GGML_USE_OPENMP
131
+ // wait for all tasks to finish
132
+ for (auto & task : ctx->tasks) {
133
+ task.get();
134
+ }
135
+ ctx->tasks.clear();
136
+ #endif
137
+ }
138
+
139
+ #if defined(OPENBLAS_VERSION)
140
+ openblas_set_num_threads(ctx->n_threads);
141
+ #endif
142
+
143
+ #if defined(BLIS_ENABLE_CBLAS)
144
+ bli_thread_set_num_threads(ctx->n_threads);
145
+ #endif
146
+
147
+ for (int64_t i13 = 0; i13 < ne13; i13++) {
148
+ for (int64_t i12 = 0; i12 < ne12; i12++) {
149
+ const int64_t i03 = i13/r3;
150
+ const int64_t i02 = i12/r2;
151
+
152
+ const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
153
+ const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
154
+ float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
155
+
156
+ if (type != GGML_TYPE_F32) {
157
+ x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
158
+ }
159
+
160
+ cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
161
+ ne1, ne01, ne10,
162
+ 1.0f, y, ne10,
163
+ x, ne00,
164
+ 0.0f, d, ne01);
165
+ }
166
+ }
167
+ }
168
+
169
+ static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
170
+ const struct ggml_tensor * src0 = dst->src[0];
171
+ const struct ggml_tensor * src1 = dst->src[1];
172
+
173
+ GGML_TENSOR_BINARY_OP_LOCALS
174
+
175
+ GGML_ASSERT(ne0 == ne00);
176
+ GGML_ASSERT(ne1 == ne10);
177
+ GGML_ASSERT(ne2 == ne02);
178
+ GGML_ASSERT(ne02 == ne12);
179
+ GGML_ASSERT(ne3 == ne13);
180
+ GGML_ASSERT(ne03 == ne13);
181
+
182
+ // we don't support permuted src0 or src1
183
+ GGML_ASSERT(nb00 == sizeof(float));
184
+
185
+ // dst cannot be transposed or permuted
186
+ GGML_ASSERT(nb0 == sizeof(float));
187
+ // GGML_ASSERT(nb0 <= nb1);
188
+ // GGML_ASSERT(nb1 <= nb2);
189
+ // GGML_ASSERT(nb2 <= nb3);
190
+
191
+ // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
192
+ // src0: (k,n)
193
+ // src1: (k,m)
194
+ // dst: (m,n)
195
+ //
196
+ // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
197
+ // Also expressed as (major,minor)
198
+ // a: (m,k): so src1 transposed
199
+ // b: (k,n): so src0
200
+ // c: (m,n)
201
+ //
202
+ // However, if ggml_is_transposed(src1) is true, then
203
+ // src1->data already contains a transposed version, so sgemm mustn't
204
+ // transpose it further.
205
+
206
+ int n = src0->ne[0];
207
+ int k = src0->ne[1];
208
+ int m = src1->ne[0];
209
+
210
+ CBLAS_TRANSPOSE transposeA;
211
+ int lda;
212
+
213
+ if (!ggml_is_transposed(src1)) {
214
+ transposeA = CblasTrans;
215
+ lda = m;
216
+ } else {
217
+ transposeA = CblasNoTrans;
218
+ lda = k;
219
+ }
220
+
221
+ float * a = (float *) ((char *) src1->data);
222
+ float * b = (float *) ((char *) src0->data);
223
+ float * c = (float *) ((char *) dst->data);
224
+
225
+ cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
226
+
227
+ GGML_UNUSED(ctx);
228
+ }
229
+
230
+ // backend interface
231
+
232
+ GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
233
+ return "BLAS";
234
+
235
+ GGML_UNUSED(backend);
236
+ }
237
+
238
+ GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
239
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
240
+ delete ctx;
241
+ delete backend;
242
+ }
243
+
244
+ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
245
+ return ggml_backend_cpu_buffer_type();
246
+
247
+ GGML_UNUSED(backend);
248
+ }
249
+
250
+ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
251
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
252
+
253
+ for (int i = 0; i < cgraph->n_nodes; i++) {
254
+ struct ggml_tensor * node = cgraph->nodes[i];
255
+
256
+ switch (node->op) {
257
+ case GGML_OP_MUL_MAT:
258
+ ggml_backend_blas_mul_mat(ctx, node);
259
+ break;
260
+
261
+ case GGML_OP_OUT_PROD:
262
+ ggml_backend_blas_out_prod(ctx, node);
263
+ break;
264
+
265
+ case GGML_OP_NONE:
266
+ case GGML_OP_RESHAPE:
267
+ case GGML_OP_VIEW:
268
+ case GGML_OP_PERMUTE:
269
+ case GGML_OP_TRANSPOSE:
270
+ break;
271
+
272
+ default:
273
+ fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
274
+ GGML_ASSERT(false);
275
+ }
276
+ }
277
+
278
+ return GGML_STATUS_SUCCESS;
279
+
280
+ GGML_UNUSED(backend);
281
+ }
282
+
283
+ GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
284
+ const struct ggml_tensor * src0 = op->src[0];
285
+ const struct ggml_tensor * src1 = op->src[1];
286
+
287
+ return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
288
+ (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
289
+ op->src[1]->type == GGML_TYPE_F32 &&
290
+ ggml_is_matrix(src0) &&
291
+ ggml_is_matrix(src1) &&
292
+ ggml_is_contiguous(src0) &&
293
+ (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
294
+
295
+ GGML_UNUSED(backend);
296
+ }
297
+
298
+ GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
299
+ return ggml_backend_buft_is_host(buft);
300
+
301
+ GGML_UNUSED(backend);
302
+ }
303
+
304
+ static struct ggml_backend_i blas_backend_i = {
305
+ /* .get_name = */ ggml_backend_blas_name,
306
+ /* .free = */ ggml_backend_blas_free,
307
+ /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
308
+ /* .set_tensor_async = */ NULL,
309
+ /* .get_tensor_async = */ NULL,
310
+ /* .cpy_tensor_async = */ NULL,
311
+ /* .synchronize = */ NULL,
312
+ /* .graph_plan_create = */ NULL,
313
+ /* .graph_plan_free = */ NULL,
314
+ /* .graph_plan_update = */ NULL,
315
+ /* .graph_plan_compute = */ NULL,
316
+ /* .graph_compute = */ ggml_backend_blas_graph_compute,
317
+ /* .supports_op = */ ggml_backend_blas_supports_op,
318
+ /* .supports_buft = */ ggml_backend_blas_supports_buft,
319
+ /* .offload_op = */ NULL,
320
+ /* .event_new = */ NULL,
321
+ /* .event_free = */ NULL,
322
+ /* .event_record = */ NULL,
323
+ /* .event_wait = */ NULL,
324
+ /* .event_synchronize = */ NULL,
325
+ };
326
+
327
+ static ggml_guid_t ggml_backend_blas_guid(void) {
328
+ static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
329
+ return &guid;
330
+ }
331
+
332
+ ggml_backend_t ggml_backend_blas_init(void) {
333
+ ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
334
+
335
+ ggml_backend_t backend = new ggml_backend {
336
+ /* .guid = */ ggml_backend_blas_guid(),
337
+ /* .interface = */ blas_backend_i,
338
+ /* .context = */ ctx,
339
+ };
340
+
341
+ #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
342
+ if (openblas_get_parallel() != OPENBLAS_OPENMP) {
343
+ fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
344
+ }
345
+ #endif
346
+
347
+ #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
348
+ fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
349
+ #endif
350
+
351
+ return backend;
352
+ }
353
+
354
+ GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
355
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
356
+ }
357
+
358
+ void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
359
+ GGML_ASSERT(ggml_backend_is_blas(backend_blas));
360
+
361
+ ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
362
+ ctx->n_threads = n_threads;
363
+ }
src/ggml-blas.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+ #include "ggml-backend.h"
5
+
6
+
7
+ #ifdef __cplusplus
8
+ extern "C" {
9
+ #endif
10
+
11
+ // backend API
12
+ GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
13
+
14
+ GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
15
+
16
+ // number of threads used for conversion to float
17
+ // for openblas and blis, this will also set the number of threads used for blas operations
18
+ GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
19
+
20
+
21
+ #ifdef __cplusplus
22
+ }
23
+ #endif