Spaces:
Running
Running
slaren
commited on
Commit
·
4b26445
1
Parent(s):
d0120b1
move BLAS to a separate backend (cont) (llama/6210)
Browse files- examples/common.h +1 -1
- ggml-blas.cpp +363 -0
- ggml-blas.h +23 -0
- src/ggml-blas.cpp +363 -0
- src/ggml-blas.h +23 -0
examples/common.h
CHANGED
|
@@ -21,7 +21,7 @@ struct gpt_params {
|
|
| 21 |
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
| 22 |
int32_t n_predict = 200; // new tokens to predict
|
| 23 |
int32_t n_parallel = 1; // number of parallel streams
|
| 24 |
-
int32_t n_batch =
|
| 25 |
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
|
| 26 |
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
|
| 27 |
|
|
|
|
| 21 |
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
| 22 |
int32_t n_predict = 200; // new tokens to predict
|
| 23 |
int32_t n_parallel = 1; // number of parallel streams
|
| 24 |
+
int32_t n_batch = 32; // batch size for prompt processing
|
| 25 |
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
|
| 26 |
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
|
| 27 |
|
ggml-blas.cpp
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "ggml-blas.h"
|
| 2 |
+
#include "ggml-backend-impl.h"
|
| 3 |
+
|
| 4 |
+
#include <future>
|
| 5 |
+
#include <vector>
|
| 6 |
+
|
| 7 |
+
#if defined(GGML_USE_ACCELERATE)
|
| 8 |
+
# include <Accelerate/Accelerate.h>
|
| 9 |
+
#elif defined(GGML_BLAS_USE_MKL)
|
| 10 |
+
# include <mkl.h>
|
| 11 |
+
#else
|
| 12 |
+
# include <cblas.h>
|
| 13 |
+
# ifdef BLIS_ENABLE_CBLAS
|
| 14 |
+
# include <blis.h>
|
| 15 |
+
# endif
|
| 16 |
+
#endif
|
| 17 |
+
|
| 18 |
+
struct ggml_backend_blas_context {
|
| 19 |
+
int n_threads = GGML_DEFAULT_N_THREADS;
|
| 20 |
+
std::unique_ptr<char[]> work_data;
|
| 21 |
+
size_t work_size = 0;
|
| 22 |
+
#ifndef GGML_USE_OPENMP
|
| 23 |
+
std::vector<std::future<void>> tasks;
|
| 24 |
+
#endif
|
| 25 |
+
};
|
| 26 |
+
|
| 27 |
+
// helper function to determine if it is better to use BLAS or not
|
| 28 |
+
// for large matrices, BLAS is faster
|
| 29 |
+
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
|
| 30 |
+
const struct ggml_tensor * src0 = dst->src[0];
|
| 31 |
+
const struct ggml_tensor * src1 = dst->src[1];
|
| 32 |
+
|
| 33 |
+
const int64_t ne10 = src1->ne[0];
|
| 34 |
+
|
| 35 |
+
const int64_t ne0 = dst->ne[0];
|
| 36 |
+
const int64_t ne1 = dst->ne[1];
|
| 37 |
+
|
| 38 |
+
// TODO: find the optimal values for these
|
| 39 |
+
if (ggml_is_contiguous(src0) &&
|
| 40 |
+
ggml_is_contiguous(src1) &&
|
| 41 |
+
src1->type == GGML_TYPE_F32 &&
|
| 42 |
+
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
| 43 |
+
|
| 44 |
+
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
| 45 |
+
return true;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
return false;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
| 52 |
+
const struct ggml_tensor * src0 = dst->src[0];
|
| 53 |
+
const struct ggml_tensor * src1 = dst->src[1];
|
| 54 |
+
|
| 55 |
+
GGML_TENSOR_BINARY_OP_LOCALS
|
| 56 |
+
|
| 57 |
+
const enum ggml_type type = src0->type;
|
| 58 |
+
|
| 59 |
+
GGML_ASSERT(ne0 == ne01);
|
| 60 |
+
GGML_ASSERT(ne1 == ne11);
|
| 61 |
+
GGML_ASSERT(ne2 == ne12);
|
| 62 |
+
GGML_ASSERT(ne3 == ne13);
|
| 63 |
+
|
| 64 |
+
// we don't support permuted src0 or src1
|
| 65 |
+
GGML_ASSERT(nb00 == ggml_type_size(type));
|
| 66 |
+
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
| 67 |
+
|
| 68 |
+
// dst cannot be transposed or permuted
|
| 69 |
+
GGML_ASSERT(nb0 == sizeof(float));
|
| 70 |
+
GGML_ASSERT(nb0 <= nb1);
|
| 71 |
+
GGML_ASSERT(nb1 <= nb2);
|
| 72 |
+
GGML_ASSERT(nb2 <= nb3);
|
| 73 |
+
|
| 74 |
+
// broadcast factors
|
| 75 |
+
const int64_t r2 = ne12/ne02;
|
| 76 |
+
const int64_t r3 = ne13/ne03;
|
| 77 |
+
|
| 78 |
+
const int64_t ne_plane = ne01*ne00;
|
| 79 |
+
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
| 80 |
+
|
| 81 |
+
if (ctx->work_size < desired_wsize) {
|
| 82 |
+
ctx->work_data.reset(new char[desired_wsize]);
|
| 83 |
+
ctx->work_size = desired_wsize;
|
| 84 |
+
}
|
| 85 |
+
void * wdata = ctx->work_data.get();
|
| 86 |
+
|
| 87 |
+
// convert src0 to float
|
| 88 |
+
if (type != GGML_TYPE_F32) {
|
| 89 |
+
ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
|
| 90 |
+
ggml_to_float_t const to_float = type_traits.to_float;
|
| 91 |
+
|
| 92 |
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
| 93 |
+
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
| 94 |
+
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
| 95 |
+
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
| 96 |
+
|
| 97 |
+
const int min_cols_per_thread = 4096;
|
| 98 |
+
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
| 99 |
+
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
| 100 |
+
|
| 101 |
+
#ifdef GGML_USE_OPENMP
|
| 102 |
+
#pragma omp parallel for num_threads(n_threads)
|
| 103 |
+
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
| 104 |
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
| 105 |
+
}
|
| 106 |
+
#else
|
| 107 |
+
for (int i = 1; i < n_threads; i++) {
|
| 108 |
+
const int64_t start = i*ne01/n_threads;
|
| 109 |
+
const int64_t end = (i + 1)*ne01/n_threads;
|
| 110 |
+
if (start < end) {
|
| 111 |
+
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
| 112 |
+
for (int64_t i01 = start; i01 < end; i01++) {
|
| 113 |
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
| 114 |
+
}
|
| 115 |
+
}));
|
| 116 |
+
}
|
| 117 |
+
}
|
| 118 |
+
{
|
| 119 |
+
// reuse the current thread for the first task
|
| 120 |
+
const int64_t start = 0;
|
| 121 |
+
const int64_t end = ne01/n_threads;
|
| 122 |
+
for (int64_t i01 = start; i01 < end; i01++) {
|
| 123 |
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
#endif
|
| 127 |
+
}
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
#ifndef GGML_USE_OPENMP
|
| 131 |
+
// wait for all tasks to finish
|
| 132 |
+
for (auto & task : ctx->tasks) {
|
| 133 |
+
task.get();
|
| 134 |
+
}
|
| 135 |
+
ctx->tasks.clear();
|
| 136 |
+
#endif
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
#if defined(OPENBLAS_VERSION)
|
| 140 |
+
openblas_set_num_threads(ctx->n_threads);
|
| 141 |
+
#endif
|
| 142 |
+
|
| 143 |
+
#if defined(BLIS_ENABLE_CBLAS)
|
| 144 |
+
bli_thread_set_num_threads(ctx->n_threads);
|
| 145 |
+
#endif
|
| 146 |
+
|
| 147 |
+
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
| 148 |
+
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
| 149 |
+
const int64_t i03 = i13/r3;
|
| 150 |
+
const int64_t i02 = i12/r2;
|
| 151 |
+
|
| 152 |
+
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
| 153 |
+
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
| 154 |
+
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
| 155 |
+
|
| 156 |
+
if (type != GGML_TYPE_F32) {
|
| 157 |
+
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
| 161 |
+
ne1, ne01, ne10,
|
| 162 |
+
1.0f, y, ne10,
|
| 163 |
+
x, ne00,
|
| 164 |
+
0.0f, d, ne01);
|
| 165 |
+
}
|
| 166 |
+
}
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
| 170 |
+
const struct ggml_tensor * src0 = dst->src[0];
|
| 171 |
+
const struct ggml_tensor * src1 = dst->src[1];
|
| 172 |
+
|
| 173 |
+
GGML_TENSOR_BINARY_OP_LOCALS
|
| 174 |
+
|
| 175 |
+
GGML_ASSERT(ne0 == ne00);
|
| 176 |
+
GGML_ASSERT(ne1 == ne10);
|
| 177 |
+
GGML_ASSERT(ne2 == ne02);
|
| 178 |
+
GGML_ASSERT(ne02 == ne12);
|
| 179 |
+
GGML_ASSERT(ne3 == ne13);
|
| 180 |
+
GGML_ASSERT(ne03 == ne13);
|
| 181 |
+
|
| 182 |
+
// we don't support permuted src0 or src1
|
| 183 |
+
GGML_ASSERT(nb00 == sizeof(float));
|
| 184 |
+
|
| 185 |
+
// dst cannot be transposed or permuted
|
| 186 |
+
GGML_ASSERT(nb0 == sizeof(float));
|
| 187 |
+
// GGML_ASSERT(nb0 <= nb1);
|
| 188 |
+
// GGML_ASSERT(nb1 <= nb2);
|
| 189 |
+
// GGML_ASSERT(nb2 <= nb3);
|
| 190 |
+
|
| 191 |
+
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
| 192 |
+
// src0: (k,n)
|
| 193 |
+
// src1: (k,m)
|
| 194 |
+
// dst: (m,n)
|
| 195 |
+
//
|
| 196 |
+
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
| 197 |
+
// Also expressed as (major,minor)
|
| 198 |
+
// a: (m,k): so src1 transposed
|
| 199 |
+
// b: (k,n): so src0
|
| 200 |
+
// c: (m,n)
|
| 201 |
+
//
|
| 202 |
+
// However, if ggml_is_transposed(src1) is true, then
|
| 203 |
+
// src1->data already contains a transposed version, so sgemm mustn't
|
| 204 |
+
// transpose it further.
|
| 205 |
+
|
| 206 |
+
int n = src0->ne[0];
|
| 207 |
+
int k = src0->ne[1];
|
| 208 |
+
int m = src1->ne[0];
|
| 209 |
+
|
| 210 |
+
CBLAS_TRANSPOSE transposeA;
|
| 211 |
+
int lda;
|
| 212 |
+
|
| 213 |
+
if (!ggml_is_transposed(src1)) {
|
| 214 |
+
transposeA = CblasTrans;
|
| 215 |
+
lda = m;
|
| 216 |
+
} else {
|
| 217 |
+
transposeA = CblasNoTrans;
|
| 218 |
+
lda = k;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
float * a = (float *) ((char *) src1->data);
|
| 222 |
+
float * b = (float *) ((char *) src0->data);
|
| 223 |
+
float * c = (float *) ((char *) dst->data);
|
| 224 |
+
|
| 225 |
+
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
| 226 |
+
|
| 227 |
+
GGML_UNUSED(ctx);
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
// backend interface
|
| 231 |
+
|
| 232 |
+
GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
|
| 233 |
+
return "BLAS";
|
| 234 |
+
|
| 235 |
+
GGML_UNUSED(backend);
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
|
| 239 |
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
| 240 |
+
delete ctx;
|
| 241 |
+
delete backend;
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
|
| 245 |
+
return ggml_backend_cpu_buffer_type();
|
| 246 |
+
|
| 247 |
+
GGML_UNUSED(backend);
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
| 251 |
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
| 252 |
+
|
| 253 |
+
for (int i = 0; i < cgraph->n_nodes; i++) {
|
| 254 |
+
struct ggml_tensor * node = cgraph->nodes[i];
|
| 255 |
+
|
| 256 |
+
switch (node->op) {
|
| 257 |
+
case GGML_OP_MUL_MAT:
|
| 258 |
+
ggml_backend_blas_mul_mat(ctx, node);
|
| 259 |
+
break;
|
| 260 |
+
|
| 261 |
+
case GGML_OP_OUT_PROD:
|
| 262 |
+
ggml_backend_blas_out_prod(ctx, node);
|
| 263 |
+
break;
|
| 264 |
+
|
| 265 |
+
case GGML_OP_NONE:
|
| 266 |
+
case GGML_OP_RESHAPE:
|
| 267 |
+
case GGML_OP_VIEW:
|
| 268 |
+
case GGML_OP_PERMUTE:
|
| 269 |
+
case GGML_OP_TRANSPOSE:
|
| 270 |
+
break;
|
| 271 |
+
|
| 272 |
+
default:
|
| 273 |
+
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
| 274 |
+
GGML_ASSERT(false);
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
return GGML_STATUS_SUCCESS;
|
| 279 |
+
|
| 280 |
+
GGML_UNUSED(backend);
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
| 284 |
+
const struct ggml_tensor * src0 = op->src[0];
|
| 285 |
+
const struct ggml_tensor * src1 = op->src[1];
|
| 286 |
+
|
| 287 |
+
return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
|
| 288 |
+
(op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
|
| 289 |
+
op->src[1]->type == GGML_TYPE_F32 &&
|
| 290 |
+
ggml_is_matrix(src0) &&
|
| 291 |
+
ggml_is_matrix(src1) &&
|
| 292 |
+
ggml_is_contiguous(src0) &&
|
| 293 |
+
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
|
| 294 |
+
|
| 295 |
+
GGML_UNUSED(backend);
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
| 299 |
+
return ggml_backend_buft_is_host(buft);
|
| 300 |
+
|
| 301 |
+
GGML_UNUSED(backend);
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
static struct ggml_backend_i blas_backend_i = {
|
| 305 |
+
/* .get_name = */ ggml_backend_blas_name,
|
| 306 |
+
/* .free = */ ggml_backend_blas_free,
|
| 307 |
+
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
|
| 308 |
+
/* .set_tensor_async = */ NULL,
|
| 309 |
+
/* .get_tensor_async = */ NULL,
|
| 310 |
+
/* .cpy_tensor_async = */ NULL,
|
| 311 |
+
/* .synchronize = */ NULL,
|
| 312 |
+
/* .graph_plan_create = */ NULL,
|
| 313 |
+
/* .graph_plan_free = */ NULL,
|
| 314 |
+
/* .graph_plan_update = */ NULL,
|
| 315 |
+
/* .graph_plan_compute = */ NULL,
|
| 316 |
+
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
| 317 |
+
/* .supports_op = */ ggml_backend_blas_supports_op,
|
| 318 |
+
/* .supports_buft = */ ggml_backend_blas_supports_buft,
|
| 319 |
+
/* .offload_op = */ NULL,
|
| 320 |
+
/* .event_new = */ NULL,
|
| 321 |
+
/* .event_free = */ NULL,
|
| 322 |
+
/* .event_record = */ NULL,
|
| 323 |
+
/* .event_wait = */ NULL,
|
| 324 |
+
/* .event_synchronize = */ NULL,
|
| 325 |
+
};
|
| 326 |
+
|
| 327 |
+
static ggml_guid_t ggml_backend_blas_guid(void) {
|
| 328 |
+
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
| 329 |
+
return &guid;
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
ggml_backend_t ggml_backend_blas_init(void) {
|
| 333 |
+
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
| 334 |
+
|
| 335 |
+
ggml_backend_t backend = new ggml_backend {
|
| 336 |
+
/* .guid = */ ggml_backend_blas_guid(),
|
| 337 |
+
/* .interface = */ blas_backend_i,
|
| 338 |
+
/* .context = */ ctx,
|
| 339 |
+
};
|
| 340 |
+
|
| 341 |
+
#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
| 342 |
+
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
| 343 |
+
fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
| 344 |
+
}
|
| 345 |
+
#endif
|
| 346 |
+
|
| 347 |
+
#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
| 348 |
+
fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
| 349 |
+
#endif
|
| 350 |
+
|
| 351 |
+
return backend;
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
|
| 355 |
+
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
| 359 |
+
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
| 360 |
+
|
| 361 |
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
| 362 |
+
ctx->n_threads = n_threads;
|
| 363 |
+
}
|
ggml-blas.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include "ggml.h"
|
| 4 |
+
#include "ggml-backend.h"
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
#ifdef __cplusplus
|
| 8 |
+
extern "C" {
|
| 9 |
+
#endif
|
| 10 |
+
|
| 11 |
+
// backend API
|
| 12 |
+
GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
|
| 13 |
+
|
| 14 |
+
GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
|
| 15 |
+
|
| 16 |
+
// number of threads used for conversion to float
|
| 17 |
+
// for openblas and blis, this will also set the number of threads used for blas operations
|
| 18 |
+
GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#ifdef __cplusplus
|
| 22 |
+
}
|
| 23 |
+
#endif
|
src/ggml-blas.cpp
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "ggml-blas.h"
|
| 2 |
+
#include "ggml-backend-impl.h"
|
| 3 |
+
|
| 4 |
+
#include <future>
|
| 5 |
+
#include <vector>
|
| 6 |
+
|
| 7 |
+
#if defined(GGML_USE_ACCELERATE)
|
| 8 |
+
# include <Accelerate/Accelerate.h>
|
| 9 |
+
#elif defined(GGML_BLAS_USE_MKL)
|
| 10 |
+
# include <mkl.h>
|
| 11 |
+
#else
|
| 12 |
+
# include <cblas.h>
|
| 13 |
+
# ifdef BLIS_ENABLE_CBLAS
|
| 14 |
+
# include <blis.h>
|
| 15 |
+
# endif
|
| 16 |
+
#endif
|
| 17 |
+
|
| 18 |
+
struct ggml_backend_blas_context {
|
| 19 |
+
int n_threads = GGML_DEFAULT_N_THREADS;
|
| 20 |
+
std::unique_ptr<char[]> work_data;
|
| 21 |
+
size_t work_size = 0;
|
| 22 |
+
#ifndef GGML_USE_OPENMP
|
| 23 |
+
std::vector<std::future<void>> tasks;
|
| 24 |
+
#endif
|
| 25 |
+
};
|
| 26 |
+
|
| 27 |
+
// helper function to determine if it is better to use BLAS or not
|
| 28 |
+
// for large matrices, BLAS is faster
|
| 29 |
+
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
|
| 30 |
+
const struct ggml_tensor * src0 = dst->src[0];
|
| 31 |
+
const struct ggml_tensor * src1 = dst->src[1];
|
| 32 |
+
|
| 33 |
+
const int64_t ne10 = src1->ne[0];
|
| 34 |
+
|
| 35 |
+
const int64_t ne0 = dst->ne[0];
|
| 36 |
+
const int64_t ne1 = dst->ne[1];
|
| 37 |
+
|
| 38 |
+
// TODO: find the optimal values for these
|
| 39 |
+
if (ggml_is_contiguous(src0) &&
|
| 40 |
+
ggml_is_contiguous(src1) &&
|
| 41 |
+
src1->type == GGML_TYPE_F32 &&
|
| 42 |
+
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
| 43 |
+
|
| 44 |
+
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
| 45 |
+
return true;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
return false;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
| 52 |
+
const struct ggml_tensor * src0 = dst->src[0];
|
| 53 |
+
const struct ggml_tensor * src1 = dst->src[1];
|
| 54 |
+
|
| 55 |
+
GGML_TENSOR_BINARY_OP_LOCALS
|
| 56 |
+
|
| 57 |
+
const enum ggml_type type = src0->type;
|
| 58 |
+
|
| 59 |
+
GGML_ASSERT(ne0 == ne01);
|
| 60 |
+
GGML_ASSERT(ne1 == ne11);
|
| 61 |
+
GGML_ASSERT(ne2 == ne12);
|
| 62 |
+
GGML_ASSERT(ne3 == ne13);
|
| 63 |
+
|
| 64 |
+
// we don't support permuted src0 or src1
|
| 65 |
+
GGML_ASSERT(nb00 == ggml_type_size(type));
|
| 66 |
+
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
| 67 |
+
|
| 68 |
+
// dst cannot be transposed or permuted
|
| 69 |
+
GGML_ASSERT(nb0 == sizeof(float));
|
| 70 |
+
GGML_ASSERT(nb0 <= nb1);
|
| 71 |
+
GGML_ASSERT(nb1 <= nb2);
|
| 72 |
+
GGML_ASSERT(nb2 <= nb3);
|
| 73 |
+
|
| 74 |
+
// broadcast factors
|
| 75 |
+
const int64_t r2 = ne12/ne02;
|
| 76 |
+
const int64_t r3 = ne13/ne03;
|
| 77 |
+
|
| 78 |
+
const int64_t ne_plane = ne01*ne00;
|
| 79 |
+
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
| 80 |
+
|
| 81 |
+
if (ctx->work_size < desired_wsize) {
|
| 82 |
+
ctx->work_data.reset(new char[desired_wsize]);
|
| 83 |
+
ctx->work_size = desired_wsize;
|
| 84 |
+
}
|
| 85 |
+
void * wdata = ctx->work_data.get();
|
| 86 |
+
|
| 87 |
+
// convert src0 to float
|
| 88 |
+
if (type != GGML_TYPE_F32) {
|
| 89 |
+
ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
|
| 90 |
+
ggml_to_float_t const to_float = type_traits.to_float;
|
| 91 |
+
|
| 92 |
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
| 93 |
+
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
| 94 |
+
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
| 95 |
+
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
| 96 |
+
|
| 97 |
+
const int min_cols_per_thread = 4096;
|
| 98 |
+
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
| 99 |
+
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
| 100 |
+
|
| 101 |
+
#ifdef GGML_USE_OPENMP
|
| 102 |
+
#pragma omp parallel for num_threads(n_threads)
|
| 103 |
+
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
| 104 |
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
| 105 |
+
}
|
| 106 |
+
#else
|
| 107 |
+
for (int i = 1; i < n_threads; i++) {
|
| 108 |
+
const int64_t start = i*ne01/n_threads;
|
| 109 |
+
const int64_t end = (i + 1)*ne01/n_threads;
|
| 110 |
+
if (start < end) {
|
| 111 |
+
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
| 112 |
+
for (int64_t i01 = start; i01 < end; i01++) {
|
| 113 |
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
| 114 |
+
}
|
| 115 |
+
}));
|
| 116 |
+
}
|
| 117 |
+
}
|
| 118 |
+
{
|
| 119 |
+
// reuse the current thread for the first task
|
| 120 |
+
const int64_t start = 0;
|
| 121 |
+
const int64_t end = ne01/n_threads;
|
| 122 |
+
for (int64_t i01 = start; i01 < end; i01++) {
|
| 123 |
+
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
#endif
|
| 127 |
+
}
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
#ifndef GGML_USE_OPENMP
|
| 131 |
+
// wait for all tasks to finish
|
| 132 |
+
for (auto & task : ctx->tasks) {
|
| 133 |
+
task.get();
|
| 134 |
+
}
|
| 135 |
+
ctx->tasks.clear();
|
| 136 |
+
#endif
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
#if defined(OPENBLAS_VERSION)
|
| 140 |
+
openblas_set_num_threads(ctx->n_threads);
|
| 141 |
+
#endif
|
| 142 |
+
|
| 143 |
+
#if defined(BLIS_ENABLE_CBLAS)
|
| 144 |
+
bli_thread_set_num_threads(ctx->n_threads);
|
| 145 |
+
#endif
|
| 146 |
+
|
| 147 |
+
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
| 148 |
+
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
| 149 |
+
const int64_t i03 = i13/r3;
|
| 150 |
+
const int64_t i02 = i12/r2;
|
| 151 |
+
|
| 152 |
+
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
| 153 |
+
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
| 154 |
+
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
| 155 |
+
|
| 156 |
+
if (type != GGML_TYPE_F32) {
|
| 157 |
+
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
| 161 |
+
ne1, ne01, ne10,
|
| 162 |
+
1.0f, y, ne10,
|
| 163 |
+
x, ne00,
|
| 164 |
+
0.0f, d, ne01);
|
| 165 |
+
}
|
| 166 |
+
}
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
| 170 |
+
const struct ggml_tensor * src0 = dst->src[0];
|
| 171 |
+
const struct ggml_tensor * src1 = dst->src[1];
|
| 172 |
+
|
| 173 |
+
GGML_TENSOR_BINARY_OP_LOCALS
|
| 174 |
+
|
| 175 |
+
GGML_ASSERT(ne0 == ne00);
|
| 176 |
+
GGML_ASSERT(ne1 == ne10);
|
| 177 |
+
GGML_ASSERT(ne2 == ne02);
|
| 178 |
+
GGML_ASSERT(ne02 == ne12);
|
| 179 |
+
GGML_ASSERT(ne3 == ne13);
|
| 180 |
+
GGML_ASSERT(ne03 == ne13);
|
| 181 |
+
|
| 182 |
+
// we don't support permuted src0 or src1
|
| 183 |
+
GGML_ASSERT(nb00 == sizeof(float));
|
| 184 |
+
|
| 185 |
+
// dst cannot be transposed or permuted
|
| 186 |
+
GGML_ASSERT(nb0 == sizeof(float));
|
| 187 |
+
// GGML_ASSERT(nb0 <= nb1);
|
| 188 |
+
// GGML_ASSERT(nb1 <= nb2);
|
| 189 |
+
// GGML_ASSERT(nb2 <= nb3);
|
| 190 |
+
|
| 191 |
+
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
| 192 |
+
// src0: (k,n)
|
| 193 |
+
// src1: (k,m)
|
| 194 |
+
// dst: (m,n)
|
| 195 |
+
//
|
| 196 |
+
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
| 197 |
+
// Also expressed as (major,minor)
|
| 198 |
+
// a: (m,k): so src1 transposed
|
| 199 |
+
// b: (k,n): so src0
|
| 200 |
+
// c: (m,n)
|
| 201 |
+
//
|
| 202 |
+
// However, if ggml_is_transposed(src1) is true, then
|
| 203 |
+
// src1->data already contains a transposed version, so sgemm mustn't
|
| 204 |
+
// transpose it further.
|
| 205 |
+
|
| 206 |
+
int n = src0->ne[0];
|
| 207 |
+
int k = src0->ne[1];
|
| 208 |
+
int m = src1->ne[0];
|
| 209 |
+
|
| 210 |
+
CBLAS_TRANSPOSE transposeA;
|
| 211 |
+
int lda;
|
| 212 |
+
|
| 213 |
+
if (!ggml_is_transposed(src1)) {
|
| 214 |
+
transposeA = CblasTrans;
|
| 215 |
+
lda = m;
|
| 216 |
+
} else {
|
| 217 |
+
transposeA = CblasNoTrans;
|
| 218 |
+
lda = k;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
float * a = (float *) ((char *) src1->data);
|
| 222 |
+
float * b = (float *) ((char *) src0->data);
|
| 223 |
+
float * c = (float *) ((char *) dst->data);
|
| 224 |
+
|
| 225 |
+
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
| 226 |
+
|
| 227 |
+
GGML_UNUSED(ctx);
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
// backend interface
|
| 231 |
+
|
| 232 |
+
GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
|
| 233 |
+
return "BLAS";
|
| 234 |
+
|
| 235 |
+
GGML_UNUSED(backend);
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
|
| 239 |
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
| 240 |
+
delete ctx;
|
| 241 |
+
delete backend;
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
|
| 245 |
+
return ggml_backend_cpu_buffer_type();
|
| 246 |
+
|
| 247 |
+
GGML_UNUSED(backend);
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
| 251 |
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
| 252 |
+
|
| 253 |
+
for (int i = 0; i < cgraph->n_nodes; i++) {
|
| 254 |
+
struct ggml_tensor * node = cgraph->nodes[i];
|
| 255 |
+
|
| 256 |
+
switch (node->op) {
|
| 257 |
+
case GGML_OP_MUL_MAT:
|
| 258 |
+
ggml_backend_blas_mul_mat(ctx, node);
|
| 259 |
+
break;
|
| 260 |
+
|
| 261 |
+
case GGML_OP_OUT_PROD:
|
| 262 |
+
ggml_backend_blas_out_prod(ctx, node);
|
| 263 |
+
break;
|
| 264 |
+
|
| 265 |
+
case GGML_OP_NONE:
|
| 266 |
+
case GGML_OP_RESHAPE:
|
| 267 |
+
case GGML_OP_VIEW:
|
| 268 |
+
case GGML_OP_PERMUTE:
|
| 269 |
+
case GGML_OP_TRANSPOSE:
|
| 270 |
+
break;
|
| 271 |
+
|
| 272 |
+
default:
|
| 273 |
+
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
| 274 |
+
GGML_ASSERT(false);
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
return GGML_STATUS_SUCCESS;
|
| 279 |
+
|
| 280 |
+
GGML_UNUSED(backend);
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
| 284 |
+
const struct ggml_tensor * src0 = op->src[0];
|
| 285 |
+
const struct ggml_tensor * src1 = op->src[1];
|
| 286 |
+
|
| 287 |
+
return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
|
| 288 |
+
(op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
|
| 289 |
+
op->src[1]->type == GGML_TYPE_F32 &&
|
| 290 |
+
ggml_is_matrix(src0) &&
|
| 291 |
+
ggml_is_matrix(src1) &&
|
| 292 |
+
ggml_is_contiguous(src0) &&
|
| 293 |
+
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
|
| 294 |
+
|
| 295 |
+
GGML_UNUSED(backend);
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
| 299 |
+
return ggml_backend_buft_is_host(buft);
|
| 300 |
+
|
| 301 |
+
GGML_UNUSED(backend);
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
static struct ggml_backend_i blas_backend_i = {
|
| 305 |
+
/* .get_name = */ ggml_backend_blas_name,
|
| 306 |
+
/* .free = */ ggml_backend_blas_free,
|
| 307 |
+
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
|
| 308 |
+
/* .set_tensor_async = */ NULL,
|
| 309 |
+
/* .get_tensor_async = */ NULL,
|
| 310 |
+
/* .cpy_tensor_async = */ NULL,
|
| 311 |
+
/* .synchronize = */ NULL,
|
| 312 |
+
/* .graph_plan_create = */ NULL,
|
| 313 |
+
/* .graph_plan_free = */ NULL,
|
| 314 |
+
/* .graph_plan_update = */ NULL,
|
| 315 |
+
/* .graph_plan_compute = */ NULL,
|
| 316 |
+
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
| 317 |
+
/* .supports_op = */ ggml_backend_blas_supports_op,
|
| 318 |
+
/* .supports_buft = */ ggml_backend_blas_supports_buft,
|
| 319 |
+
/* .offload_op = */ NULL,
|
| 320 |
+
/* .event_new = */ NULL,
|
| 321 |
+
/* .event_free = */ NULL,
|
| 322 |
+
/* .event_record = */ NULL,
|
| 323 |
+
/* .event_wait = */ NULL,
|
| 324 |
+
/* .event_synchronize = */ NULL,
|
| 325 |
+
};
|
| 326 |
+
|
| 327 |
+
static ggml_guid_t ggml_backend_blas_guid(void) {
|
| 328 |
+
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
| 329 |
+
return &guid;
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
ggml_backend_t ggml_backend_blas_init(void) {
|
| 333 |
+
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
| 334 |
+
|
| 335 |
+
ggml_backend_t backend = new ggml_backend {
|
| 336 |
+
/* .guid = */ ggml_backend_blas_guid(),
|
| 337 |
+
/* .interface = */ blas_backend_i,
|
| 338 |
+
/* .context = */ ctx,
|
| 339 |
+
};
|
| 340 |
+
|
| 341 |
+
#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
| 342 |
+
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
| 343 |
+
fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
| 344 |
+
}
|
| 345 |
+
#endif
|
| 346 |
+
|
| 347 |
+
#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
| 348 |
+
fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
| 349 |
+
#endif
|
| 350 |
+
|
| 351 |
+
return backend;
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
|
| 355 |
+
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
| 359 |
+
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
| 360 |
+
|
| 361 |
+
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
| 362 |
+
ctx->n_threads = n_threads;
|
| 363 |
+
}
|
src/ggml-blas.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include "ggml.h"
|
| 4 |
+
#include "ggml-backend.h"
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
#ifdef __cplusplus
|
| 8 |
+
extern "C" {
|
| 9 |
+
#endif
|
| 10 |
+
|
| 11 |
+
// backend API
|
| 12 |
+
GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
|
| 13 |
+
|
| 14 |
+
GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
|
| 15 |
+
|
| 16 |
+
// number of threads used for conversion to float
|
| 17 |
+
// for openblas and blis, this will also set the number of threads used for blas operations
|
| 18 |
+
GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#ifdef __cplusplus
|
| 22 |
+
}
|
| 23 |
+
#endif
|