Spaces:
Running
Running
| // | |
| // MIT license | |
| // Copyright (C) 2024 Intel Corporation | |
| // SPDX-License-Identifier: MIT | |
| // | |
| // | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
| // See https://llvm.org/LICENSE.txt for license information. | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
| // | |
| /* suppress warning spam */ | |
| void* ggml_sycl_host_malloc(size_t size); | |
| void ggml_sycl_host_free(void* ptr); | |
| extern int g_ggml_sycl_debug; | |
| extern int g_ggml_sycl_disable_optimize; | |
| extern int g_ggml_sycl_prioritize_dmmv; | |
| // Hint the optimizer to pipeline the more likely following instruction in branches | |
| // define for XMX in Intel GPU | |
| // TODO: currently, it's not used for XMX really. | |
| // max batch size to use MMQ kernels when tensor cores are available | |
| // dmmv = dequantize_mul_mat_vec | |
| typedef sycl::queue *queue_ptr; | |
| enum ggml_sycl_backend_gpu_mode { | |
| SYCL_UNSET_GPU_MODE = -1, | |
| SYCL_SINGLE_GPU_MODE = 0, | |
| SYCL_MUL_GPU_MODE | |
| }; | |
| static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size"); | |
| static void crash() { | |
| int* ptr = NULL; | |
| *ptr = 0; | |
| } | |
| [[noreturn]] static void ggml_sycl_error( | |
| const char* stmt, | |
| const char* func, | |
| const char* file, | |
| const int line, | |
| const char* msg) { | |
| fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg); | |
| fprintf(stderr, " in function %s at %s:%d\n", func, file, line); | |
| GGML_ABORT("SYCL error"); | |
| } | |
| typedef sycl::half dfloat; // dequantize float | |
| typedef sycl::half2 dfloat2; | |
| typedef float dfloat; // dequantize float | |
| typedef sycl::float2 dfloat2; | |
| static int g_all_sycl_device_count = -1; | |
| static bool g_ggml_backend_sycl_buffer_type_initialized = false; | |
| static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode = | |
| SYCL_UNSET_GPU_MODE; | |
| static void* g_scratch_buffer = nullptr; | |
| static size_t g_scratch_size = 0; // disabled by default | |
| static size_t g_scratch_offset = 0; | |
| [[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) { | |
| stream_ct1 << "ERROR: ggml-sycl was compiled without support for the " | |
| "current GPU architecture.\n"; | |
| // __trap(); | |
| std::exit(1); | |
| (void)bad_arch; // suppress unused function warning | |
| } | |
| int get_current_device_id(); | |
| inline dpct::err0 ggml_sycl_set_device(const int device) try { | |
| int current_device_id; | |
| SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id())); | |
| // GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d, | |
| // current_device_id=%d\n", device, current_device); | |
| if (device == current_device_id) { | |
| return 0; | |
| } | |
| return CHECK_TRY_ERROR(dpct::select_device(device)); | |
| } catch (sycl::exception const& exc) { | |
| std::cerr << exc.what() << "Exception caught at file:" << __FILE__ | |
| << ", line:" << __LINE__ << std::endl; | |
| crash(); | |
| std::exit(1); | |
| } | |
| ////////////////////// | |
| struct optimize_feature { | |
| bool reorder=false; | |
| }; | |
| struct sycl_device_info { | |
| int cc; // compute capability | |
| // int nsm; // number of streaming multiprocessors | |
| // size_t smpb; // max. shared memory per block | |
| bool vmm; // virtual memory support | |
| size_t total_vram; | |
| //sycl_hw_info hw_info; \\ device id and aarch, currently not used | |
| optimize_feature opt_feature; | |
| }; | |
| struct ggml_sycl_device_info { | |
| int device_count; | |
| sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {}; | |
| std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {}; | |
| int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0}; | |
| }; | |
| const ggml_sycl_device_info & ggml_sycl_info(); | |
| struct ggml_sycl_pool { | |
| virtual ~ggml_sycl_pool() = default; | |
| virtual void * alloc(size_t size, size_t * actual_size) = 0; | |
| virtual void free(void * ptr, size_t size) = 0; | |
| }; | |
| template<typename T> | |
| struct ggml_sycl_pool_alloc { | |
| ggml_sycl_pool * pool = nullptr; | |
| T * ptr = nullptr; | |
| size_t actual_size = 0; | |
| explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) { | |
| } | |
| ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) { | |
| alloc(size); | |
| } | |
| ~ggml_sycl_pool_alloc() { | |
| if (ptr != nullptr) { | |
| pool->free(ptr, actual_size); | |
| } | |
| } | |
| T * realloc(size_t size) { | |
| GGML_ASSERT(pool != nullptr); | |
| if (ptr) | |
| pool->free(ptr, actual_size); | |
| ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size); | |
| return ptr; | |
| } | |
| // size is in number of elements | |
| T * alloc(size_t size) { | |
| GGML_ASSERT(pool != nullptr); | |
| GGML_ASSERT(ptr == nullptr); | |
| ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size); | |
| return ptr; | |
| } | |
| T * alloc(ggml_sycl_pool & pool, size_t size) { | |
| this->pool = &pool; | |
| return alloc(size); | |
| } | |
| T * get() { | |
| return ptr; | |
| } | |
| ggml_sycl_pool_alloc() = default; | |
| ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete; | |
| ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete; | |
| ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete; | |
| ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete; | |
| }; | |
| // backend interface | |
| struct ggml_tensor_extra_gpu { | |
| void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split | |
| // tensors | |
| dpct::event_ptr events[GGML_SYCL_MAX_DEVICES] | |
| [GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs | |
| optimize_feature optimized_feature; | |
| }; | |
| void release_extra_gpu(ggml_tensor_extra_gpu * extra, std::vector<queue_ptr> streams={}); | |
| namespace sycl_ex = sycl::ext::oneapi::experimental; | |
| struct ggml_backend_sycl_context { | |
| int device; | |
| std::string name; | |
| optimize_feature opt_feature; | |
| queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } }; | |
| explicit ggml_backend_sycl_context(int device) : | |
| device(device), | |
| name(GGML_SYCL_NAME + std::to_string(device)) { | |
| opt_feature = ggml_sycl_info().devices[device].opt_feature; | |
| } | |
| queue_ptr stream(int device, int stream) { | |
| if (qptrs[device][stream] == nullptr) { | |
| qptrs[device][stream] = &(dpct::get_device(device).default_queue()); | |
| } | |
| return qptrs[device][stream]; | |
| } | |
| queue_ptr stream() { | |
| return stream(device, 0); | |
| } | |
| dnnl::engine make_engine(sycl::queue* q) { | |
| // Get the device associated with the queue | |
| sycl::device dev = q->get_device(); | |
| // Get the context associated with the queue | |
| sycl::context ctx = q->get_context(); | |
| const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx); | |
| return eng; | |
| } | |
| std::unordered_map<sycl::queue*, dnnl::stream> stream_map; | |
| std::unordered_map<sycl::queue*, dnnl::engine> engine_map; | |
| dnnl::stream stream_dnnl(int device, int _stream) { | |
| auto q = stream(device, _stream); | |
| return stream_dnnl(q); | |
| } | |
| dnnl::engine engine_dnnl(sycl::queue* qptr) { | |
| auto it = engine_map.find(qptr); | |
| if (it == engine_map.end()) { | |
| auto eng = make_engine(qptr); | |
| engine_map[qptr] = eng; | |
| return eng; | |
| } | |
| else | |
| { | |
| return it->second; | |
| } | |
| } | |
| dnnl::stream stream_dnnl(sycl::queue* qptr) { | |
| auto it = stream_map.find(qptr); | |
| if (it == stream_map.end()) { | |
| auto eng = engine_dnnl(qptr); | |
| auto stream = dnnl::sycl_interop::make_stream(eng, *qptr); | |
| stream_map[qptr] = stream; | |
| return stream; | |
| } | |
| else | |
| { | |
| return it->second; | |
| } | |
| } | |
| dnnl::stream stream_dnnl() { | |
| return stream_dnnl(device, 0); | |
| } | |
| dnnl::memory get_scratchpad_mem(const dnnl::memory::desc & scratchpad_md, | |
| const dnnl::engine & eng, const queue_ptr q) { | |
| ggml_sycl_pool_alloc<uint8_t> * pool; | |
| auto it = scratchpad_map.find(q); | |
| if (it == scratchpad_map.end()) { | |
| scratchpad_map[q] = std::make_unique<ggml_sycl_pool_alloc<uint8_t>>(this->pool()); | |
| pool = scratchpad_map[q].get(); | |
| } else { | |
| pool = it->second.get(); | |
| } | |
| size_t scratchpad_size = scratchpad_md.get_size(); | |
| if (scratchpad_size > pool->actual_size) { | |
| pool->realloc(scratchpad_size); | |
| } | |
| void * mem_ptr = pool->get(); | |
| return dnnl::memory(scratchpad_md, eng, mem_ptr); | |
| } | |
| // pool | |
| std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES]; | |
| std::unordered_map<sycl::queue *, std::unique_ptr<ggml_sycl_pool_alloc<uint8_t>>> scratchpad_map; | |
| std::unique_ptr<ggml_sycl_pool> host_pools[GGML_SYCL_MAX_DEVICES]; | |
| static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device); | |
| static std::unique_ptr<ggml_sycl_pool> new_pool_for_host(queue_ptr qptr, int device); | |
| ggml_sycl_pool & pool(int device) { | |
| if (pools[device] == nullptr) { | |
| pools[device] = new_pool_for_device(stream(device,0), device); | |
| } | |
| return *pools[device]; | |
| } | |
| ggml_sycl_pool & pool() { | |
| return pool(device); | |
| } | |
| std::unique_ptr<sycl_ex::command_graph<sycl_ex::graph_state::executable>> exec_graph = nullptr; | |
| ggml_sycl_pool & host_pool(int device) { | |
| if (host_pools[device] == nullptr) { | |
| host_pools[device] = new_pool_for_host(stream(device, 0), device); | |
| } | |
| return *host_pools[device]; | |
| } | |
| ggml_sycl_pool & host_pool() { return host_pool(device); } | |
| }; | |
| // common device functions | |
| static __dpct_inline__ float warp_reduce_sum(float x, | |
| const sycl::nd_item<3>& item_ct1) { | |
| for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
| /* | |
| DPCT1096:98: The right-most dimension of the work-group used in the SYCL | |
| kernel that calls this function may be less than "32". The function | |
| "dpct::permute_sub_group_by_xor" may return an unexpected result on the | |
| CPU device. Modify the size of the work-group to ensure that the value | |
| of the right-most dimension is a multiple of "32". | |
| */ | |
| x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask); | |
| } | |
| return x; | |
| } | |
| static __dpct_inline__ sycl::float2 | |
| warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) { | |
| for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
| a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(), | |
| mask); | |
| a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(), | |
| mask); | |
| } | |
| return a; | |
| } | |
| static __dpct_inline__ float warp_reduce_max(float x, | |
| const sycl::nd_item<3>& item_ct1) { | |
| for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
| /* | |
| DPCT1096:97: The right-most dimension of the work-group used in the SYCL | |
| kernel that calls this function may be less than "32". The function | |
| "dpct::permute_sub_group_by_xor" may return an unexpected result on the | |
| CPU device. Modify the size of the work-group to ensure that the value | |
| of the right-most dimension is a multiple of "32". | |
| */ | |
| x = sycl::fmax(x, dpct::permute_sub_group_by_xor( | |
| item_ct1.get_sub_group(), x, mask)); | |
| } | |
| return x; | |
| } | |
| /* Helper for Computing the linear offset of a ggml_tensor given | |
| per-dimension sizes, strides, and indices */ | |
| template<int N> | |
| __dpct_inline__ size_t calculate_offset(const std::array<int, N> & strides, const std::array<int, N> & indices) { | |
| size_t offset = 0; | |
| for (int i = 0; i < N; i++) { | |
| auto index_i = indices[i]; | |
| offset += strides[i] * index_i; | |
| } | |
| return offset; | |
| } | |
| // Helper for vec loading aligned data | |
| template <typename Tp, int n> | |
| inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) { | |
| return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr); | |
| } | |
| // Helper for accessing pointers with no warnings | |
| template <typename Tp, int dim> | |
| static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) { | |
| return acc.template get_multi_ptr<sycl::access::decorated::no>().get(); | |
| } | |
| int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size); | |
| constexpr size_t ceil_div(const size_t m, const size_t n) { | |
| return (m + n - 1) / n; | |
| } | |
| bool gpu_has_xmx(sycl::device &dev); | |
| template <int N, class T> std::string debug_get_array_str(const std::string & prefix, const T array[N]) { | |
| if (LIKELY(!g_ggml_sycl_debug)) { | |
| return ""; | |
| } | |
| std::stringstream ss; | |
| ss << prefix << "=["; | |
| for (std::size_t i = 0; i < N - 1; ++i) { | |
| ss << array[i] << ", "; | |
| } | |
| if constexpr (N > 0) { | |
| ss << array[N - 1]; | |
| } | |
| ss << "]"; | |
| return ss.str(); | |
| } | |
| inline std::string debug_get_tensor_str(const std::string &prefix, | |
| const ggml_tensor *tensor, const std::string &suffix = "") { | |
| std::stringstream ss; | |
| if (LIKELY(!g_ggml_sycl_debug)) { return ss.str(); } | |
| ss << prefix.c_str() << "="; | |
| if (tensor) { | |
| ss << "'" << tensor->name << "':type=" << ggml_type_name(tensor->type); | |
| ss << debug_get_array_str<GGML_MAX_DIMS>(";ne", tensor->ne); | |
| ss << debug_get_array_str<GGML_MAX_DIMS>(";nb", tensor->nb); | |
| if (!ggml_is_contiguous(tensor)) { ss << ";strided"; } | |
| if (ggml_is_permuted(tensor)) { ss << ";permuted"; } | |
| } else { | |
| ss << "nullptr"; | |
| } | |
| ss << suffix; | |
| return ss.str(); | |
| } | |
| // Use scope_op_debug_print to log operations coming from running a model | |
| struct scope_op_debug_print { | |
| // Use string_views to avoid the cost of creating a string and concatenating them | |
| // string_views must be alive for as long as the object is alive | |
| // scope_op_debug_print are used with string literals in practice which are stored in constant space so always accessible | |
| scope_op_debug_print(const std::string_view & func, const std::string_view & func_suffix, const ggml_tensor * dst, | |
| std::size_t num_src, const std::string_view & suffix = "") : | |
| func(func), | |
| func_suffix(func_suffix) { | |
| if (LIKELY(!g_ggml_sycl_debug)) { | |
| return; | |
| } | |
| GGML_SYCL_DEBUG("[SYCL][OP] call %s%s:", func.data(), func_suffix.data()); | |
| GGML_SYCL_DEBUG("%s", debug_get_tensor_str(" dst", dst).c_str()); | |
| if (dst) { | |
| for (std::size_t i = 0; i < num_src; ++i) { | |
| GGML_SYCL_DEBUG("%s", debug_get_tensor_str("\tsrc" + std::to_string(i), dst->src[i]).c_str()); | |
| } | |
| } | |
| GGML_SYCL_DEBUG("%s\n", suffix.data()); | |
| } | |
| scope_op_debug_print(const std::string_view & func, const ggml_tensor * dst, std::size_t num_src, | |
| const std::string_view & suffix = "") : | |
| scope_op_debug_print(func, "", dst, num_src, suffix) {} | |
| ~scope_op_debug_print() { GGML_SYCL_DEBUG("[SYCL][OP] call %s%s done\n", func.data(), func_suffix.data()); } | |
| private: | |
| std::string_view func; | |
| std::string_view func_suffix; | |
| }; | |